Bibliothèque Électronique Lac Saint-Pierre

Les transformations microbiennes de l’azote dans les grandes rivières

Tall, L. (2012). Les transformations microbiennes de l’azote dans les grandes rivières. [Thèse universitaire]

[thumbnail of Tall_2012_Transformations_microbiennes_azote_rivières_A.pdf]
Prévisualisation
Texte
Tall_2012_Transformations_microbiennes_azote_rivières_A.pdf

Télécharger (14MB) | Prévisualisation

Résumé

Les rivières reçoivent de l'azote de leurs bassins versants et elles constituent les derniers sites de transformations des nutriments avant leur livraison aux zones côtières. Les transformations de l’azote inorganique dissous en azote gazeux sont très variables et peuvent avoir un impact à la fois sur l’eutrophisation des côtes et les émissions de gaz à effet de serre à l’échelle globale. Avec l’augmentation de la charge en azote d’origine anthropique vers les écosystèmes aquatiques, les modèles d’émissions de gaz à effet de serre prédisent une augmentation des émissions d’oxyde nitreux (N2O) dans les rivières. Les mesures directes de N2O dans le Lac Saint-Pierre (LSP), un élargissement du Fleuve Saint-Laurent (SLR) indiquent que bien qu’étant une source nette de N2O vers l'atmosphère, les flux de N2O dans LSP sont faibles comparés à ceux des autres grandes rivières et fleuves du monde. Les émissions varient saisonnièrement et inter-annuellement à cause des changements hydrologiques. Les ratios d’émissions N2O: N2 sont également influencés par l’hydrologie et de faibles ratios sont observés dans des conditions de débit d'eau plus élevée et de charge en N élevé. Dans une analyse effectuée sur plusieurs grandes rivières, la charge hydraulique des systèmes semble moduler la relation entre les flux de N2O annuels et les concentrations de nitrate dans les rivières. Dans SLR, des tapis de cyanobactéries colonisant les zones à faible concentration de nitrate sont une source nette d’azote grâce à leur capacité de fixer l’azote atmosphérique (N2). Étant donné que la fixation a lieu pendant le jour alors que les concentrations d'oxygène dans la colonne d'eau sont sursaturées, nous supposons que la fixation de l’azote est effectuée dans des micro-zones d’anoxie et/ou possiblement par des diazotrophes hétérotrophes. La fixation de N dans les tapis explique le remplacement de près de 33 % de la perte de N par dénitrification dans tout l'écosystème au cours de la période d'étude. Dans la portion du fleuve Hudson soumis à la marée, la dénitrification et la production de N2 est très variable selon le type de végétation. La dénitrification est associée à la dynamique en oxygène dissous particulière à chaque espèce durant la marée descendante. La production de N2 est extrêmement élevée dans les zones occupées par les plantes envahissantes à feuilles flottantes (Trapa natans) mais elle est négligeable dans la végétation indigène submergée. Une estimation de la production de N2 dans les lits de Trapa durant l’été, suggère que ces lits représentent une zone très active d’élimination de l’azote. En effet, les grands lits de Trapa ne représentent que 2,7% de la superficie totale de la portion de fleuve étudiée, mais ils éliminent entre 70 et 100% de l'azote total retenu dans cette section pendant les mois d'été et contribuent à près de 25% de l’élimination annuelle d’azote.

Rivers receive nitrogen (N) from their watershed and are the final sites of nutrient processing before delivery to coastal waters. Transformations of dissolved inorganic N (DIN) to gaseous N are highly variable and can impact both coastal eutrophication and greenhouse gas emissions. With anthropogenic N loading to aquatic ecosystems on the rise, nitrous oxide (N2O) emission from rivers should increase. Direct measurements of N2O from lake St. Pierre (LSP), an enlargement of the St. Lawrence River (SLR) indicate that although LSP is a net atmospheric source of N2O to the atmosphere fluxes are low compared to others rivers. Emissions are seasonally and inter-annually highly variable due to changes in hydrological conditions. N2O: N2 is also influenced by hydrology and lower ratios are observed in conditions of higher water discharge and elevated N charge into the ecosystem. In a cross system analysis, hydraulic load mitigates the relation between annual N2O flux and nitrate concentrations in rivers. In SLR, cyanobacterial mats colonizing low nitrate areas are a net source of N with high negative di-nitrogen (N2) fluxes. Given that fixation occurred during daylight and that oxygen concentrations in the water column were supersaturated, we hypothesize that N2 fixation is performed by the dominant cyanobacteria in anoxic micro-zone of the mat and/ or possibly by heterotrophic diazotrophs. Our estimates indicate that N fixation in the mats account for the replacement of up to 33% of the N loss via denitrification in the entire ecosystem during the study period. In the tidal Hudson River N2 production is highly variable between vegetated shallows and was associated with species-driven differences in dissolved oxygen (DO) dynamics during the ebb tide. N2 production was extremely high in invasive floating-leaved plants (Trapa natans) but was insignificant in submersed native vegetation. An estimate of summertime N2 production in Trapa beds suggests that these beds are a major seasonal hotspot for N removal. Large Trapa beds represent only 2.7% of the total area of the tidal Hudson but they remove between 70 and 100% of the total N retained in this section of the river during summer months and contribute to as much as 25% of the annual N removal.

Type de document: Thèse universitaire
Nombre de pages: 156
Éditeur: Université de Montréal
Lieu de publication: Montréal
Statut du texte intégral: Public
Mots-clés libres: Assimilation par les plantes, Bilan massique, Dénitrification, Fleuve, Hétérogeneité spatiale et temporelle, Limitation en azote, Ratio N2O : N2, Service écosystémique, Temps de résidence de l’eau, Plante invasive, Chataigne d’eau // Denitrification, Ecosystem services, Large river, Mass balance, N2O : N2 ratio, Nitrogen limitation, Plant uptake, Spatial and temporal heterogeneity, Water residence time, Invasive plant, Water chesnut
Sujets: 1. Laboratoire de développement durable > 1.7. Environnement, écologie, écosystème
2. Milieu physique > 2.4. Hydrologie
3. Végétation, milieux humides
8. Impacts et monitoring > 8.1. Qualité de l’eau
9. Nouvelles pressions > 9.3. Espèce végétale exotique
Date de dépôt: 28 janv. 2017 21:07
Dernière modification: 28 janv. 2017 21:07
URI: https://belsp.uqtr.ca/id/eprint/1053

Gestion Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt
Coopérative de solidarité de la Réserve de la biosphère du Lac-Saint-Pierre
Concepteur de la BELSP : André Barabé, Ph. D.