Bibliothèque Électronique Lac Saint-Pierre

Population counts along elliptical habitat contours: Hierarchical modeling using Poisson-lognormal mixtures with nonstationary spatial structure

Schmidt, A. et Rodriguez, M.A. et Capistrano, E. (2015). Population counts along elliptical habitat contours: Hierarchical modeling using Poisson-lognormal mixtures with nonstationary spatial structure. The Annals of Applied Statistics , 9 (3). pp. 1372-1393. DOI: 10.1214/15-AOAS838.

Ce document n'est pas hébergé sur Bibliothèque Électronique Lac Saint-Pierre.


Ecologists often interpret variation in the spatial distribution of populations in terms of responses to environmental features, but disentangling the effects of individual variables can be difficult if latent effects and spatial and temporal correlations are not accounted for properly. Here, we use hierarchical models based on a Poisson-lognormal mixture to understand the spatial variation in relative abundance (counts per standardized unit of effort) of yellow perch, Perca flavescens, the most abundant fish species in Lake Saint Pierre, Quebec, Canada. The mixture incorporates spatially varying environmental covariates that represent local habitat characteristics, and random temporal and spatial effects that capture the effects of unobserved ecological processes. The sampling design covers the margins but not the central region of the lake.We fit spatial generalized linear mixed models based on three different prior covariance structures for the local latent effects: a single Gaussian process (GP) over the lake, a GP over a circle, and independent GP for each shore. The models allow for independence, isotropy, or nonstationary spatial effects. Nonstationarity is dealt with using two different approaches, geometric anisotropy and the inclusion of covariates in the correlation structure of the latent spatial process. The proposed approaches for specification of spatial domain and choice of Gaussian process priors may prove useful in other applications that involve spatial correlation along an irregular contour or in discontinuous spatial domains.

Type de document: Article scientifique
Statut du texte intégral: Autre
Mots-clés libres: Bayesian inference, covariate-in-correlation function, Gaussian process, geometric anisotropy, lake shorelines, Perca flavescens, spatial confounding
Sujets: 2. Milieu physique > 2.4. Hydrologie
4. Faune > 4.2. Poisson
8. Impacts et monitoring > 8.4. Population de perchaude
8. Impacts et monitoring > 8.7. Modélisations et indicateurs
Date de dépôt: 22 mai 2018 14:28
Dernière modification: 08 sept. 2021 20:06

Gestion Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt
Coopérative de solidarité de la Réserve de la biosphère du Lac-Saint-Pierre
Concepteur de la BELSP : André Barabé, Ph. D.