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SOMMAIRE

Cette thèse étudie l’impact de la mise en œuvre de mesures d’adaptation aux

changements climatiques dans la province du Québec (Canada) et dans des pays

d’Afrique subsaharienne, qui est articulée autour de trois articles. L’adaptation au

changement climatique revêt une importance cruciale pour le secteur agricole et les

services écosystémiques. Les services écosystémiques jouent un rôle essentiel dans la

croissance des plantes et, par conséquent, dans l’amélioration des rendements agricoles.

La littérature actuelle suggère que l’agriculture sera fortement et négativement impactée

par les changements climatiques. Dans ce contexte, il devient impératif d’adopter des

mesures d’adaptation afin de permettre aux agriculteurs de minimiser les pertes poten-

tielles. Quels sont les avantages économiques de ces initiatives, et lesquelles s’avèrent les

plus efficaces? Ces questions trouvent leurs réponses dans cette thèse.

Dans le premier article, j’examine l’impact global de la mise en place de mesures

d’adaptation aux changements climatiques sur les rendements agricoles ainsi que l’effet

propre de chaque stratégie d’adaptation sur ces rendements. Le deuxième article vise à

déterminer si la mise en œuvre de ces mêmes stratégies d’adaptation aux changements

climatiques réduit l’exposition des agriculteurs aux risques associés aux aléas clima-

tiques. Le troisième article évalue, quant à lui, les bénéfices économiques découlant de

la mise en œuvre de sept mesures d’adaptation aux changements climatiques pour les

services écosystémiques du Lac Saint-Pierre.

En résumé, cette thèse analyse la portée de l’adoption de mesures d’adaptation aux

changements climatiques dans les domaines de la pêche en eau libre et de l’agriculture.

Elle considére les variables climatiques importantes, telles que l’évaporation, la vitesse

du vent, et la durée d’ensoleillement ainsi que les volontés à payer des pêcheurs sportifs

en eau libre pour une meilleure accessibilité aux sites de pêche.
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RÉSUMÉ

Cette recherche examine les effets des mesures d’adaptation au changement

climatique sur les services écosystémiques dans la province de Québec (Canada) et dans

le domaine agricole en Afrique subsaharienne. Elle comprend trois articles.

Le premier article vise à évaluer l’impact de l’adoption de stratégies d’adaptation

climatique sur l’accroissement des rendements agricoles, en analysant l’effet de chaque

stratégie individuellement. Pour ce faire, il s’appuie sur des données recueillies auprès de

5 091 ménages agricoles dans quatre pays africains : Burkina Faso, Sao Tomé-et-Principe,

Sierra Leone et Ouganda. L’étude inclut également l’analyse de données climatiques

spatiales sur une période de 30 ans, couvrant cinq variables climatiques. Les résultats

révèlent que l’adaptation augmente significativement les rendements agricoles, grâce

notamment à un meilleur accès au crédit et à des informations adéquates. J’ai estimé

un modèle d’équations simultanées avec commutation endogène pour tenir compte

de l’hétérogénéité dans la décision de s’adapter ou non, ainsi que des caractéristiques

non observables des agriculteurs et de leurs exploitations. Les résultats montrent que

l’adoption de mesures d’adaptation augmente les rendements agricoles de 281 kg, soit

une hausse de 23,3% par rapport au rendement annuel moyen. L’adoption de stratégies

d’adaptation, qu’elles soient individuelles ou combinées, accroît significativement les

rendements agricoles. Ainsi, la combinaison de l’ajustement des dates de semis et du

choix de variétés cultivées est associée aux rendements agricoles les plus élevés, soit

343,3 kg par hectare.

Le deuxième article de cette thèse utilise les mêmes ensembles de données et la

même méthodologie que le premier pour examiner l’efficacité des stratégies d’adaptation

au changement climatique dans la diminution de la vulnérabilité des agriculteurs aux

aléas climatiques. Les résultats indiquent une réduction notable de cette vulnérabilité
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grâce à l’application de ces mesures. Cependant, l’impact de l’adaptation sur la réduction

des risques climatiques varie d’un pays à l’autre.

Le dernier article de cette recherche examine les bénéfices économiques de sept

stratégies d’adaptation destinées à améliorer à la fois les services écosystémiques et la

pêche en eau libre dans le Lac Saint-Pierre, au Québec. Pour ce faire, l’analyse s’appuie

sur des données collectées lors des visites récentes de 212 pêcheurs répartis sur six sites

différents du lac, ainsi que sur les réponses obtenues via des enquêtes de choix discret.

Les résultats révèlent que la mise en œuvre de ces mesures pourrait entraîner des gains

annuels estimés à environ 9,62 millions de dollars pour la pêche en eau libre. De plus,

cette étude offre des perspectives importantes sur l’intégration des données issues des

préférences révélées et déclarées, mettant en lumière une divergence notable entre les

choix hypothétiques et les décisions prises lors d’activités de pêche concrètes.



6

ABSTRACT

This research examines the effects of climate change adaptation measures on

ecosystem services in the province of Quebec (Canada) and in the agricultural sector in

Sub-Saharan Africa. It comprises three articles.

The first article aims to evaluate the impact of adopting climate change adaptation

strategies on the increase in agricultural yields, analyzing the effect of each strategy

individually. To do this, it relies on data collected from 5,091 agricultural households

in four African countries : Burkina Faso, Sao Tome and Principe, Sierra Leone, and

Uganda. The study also includes the analysis of spatial climate data over a 30-year period,

covering five climate variables. The results reveal that adaptation significantly increases

agricultural yields, thanks notably to better access to credit and adequate information. I

estimated a simultaneous equations model with endogenous switching to account for the

heterogeneity in the decision to adapt or not, as well as for the unobservable characteris-

tics of farmers and their farms. The results show that the adoption of adaptation measures

increases agricultural yields by 281 kg, an increase of 23.3% compared to the average

annual yield. The adoption of adaptation strategies, whether individual or combined,

significantly increases agricultural yields. Thus, the combination of adjusting planting

dates and choosing cultivated varieties is associated with the highest agricultural yields,

namely 343.3 kg per hectare.

The second article of this thesis uses the same data sets and methodology as the

first to examine the effectiveness of climate change adaptation strategies in reducing

farmers’ vulnerability to climatic hazards. The results indicate a significant reduction in

this vulnerability due to the implementation of these measures. However, the impact of

adaptation on reducing climate risks varies from country to country.
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The final article of this research examines the economic benefits of seven adapta-

tion strategies aimed at improving both ecosystem services and open-water fishing in Lake

Saint-Pierre, Quebec. For this, the analysis is based on data collected from recent visits

of 212 fishermen across six different sites on the lake, as well as on responses obtained

through discrete choice surveys. The results reveal that the implementation of these mea-

sures could result in annual gains estimated at about 9.62 million dollars for open-water

fishing. Moreover, this study provides important insights into the integration of data from

revealed and stated preferences, highlighting a notable divergence between hypothetical

choices and decisions made during actual fishing activities.
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INTRODUCTION

Les variables climatiques, intervenant directement dans le processus agricole, ont

un impact majeur sur l’agriculture en raison du changement climatique, comme le dé-

montrent de nombreuses études (Mendelsohn et al., 1994; Deschênes and Greenstone,

2007). Les agriculteurs des pays africains seraient particulièrement affectés du fait de leur

accès limité aux technologies et au crédit (Guiteras, 2009). Le changement climatique,

en réduisant les rendements agricoles, accentue l’exposition des agriculteurs aux risques

associés aux aléas climatiques (Di Falco and Veronesi, 2014), avec des répercussions po-

tentielles sur le bien-être et la santé des ménages agricoles (Burgess et al., 2017).

Adopter des mesures d’adaptation peut aider les agriculteurs à minimiser les im-

pacts du changement climatique sur leurs rendements (Di Falco et al., 2011) et à réduire

leur vulnérabilité aux risques climatiques. Par exemple, face à des sols asséchés par des

précipitations insuffisantes, les agriculteurs peuvent opter pour des techniques d’irriga-

tion, comme des arroseurs ou des pompes à eau souterraine, afin de favoriser la crois-

sance des cultures. Des recherches récentes indiquent que les agriculteurs adaptent leurs

pratiques face au changement climatique afin d’augmenter les rendements et de limiter

leur exposition aux aléas environnementaux (Zhang et al., 2017). Néanmoins, ces études

traitent souvent l’adaptation comme une boîte noire, sans détailler les mesures spéci-

fiques prises par les agriculteurs ni évaluer leur efficacité, se concentrant davantage sur

les conséquences du changement climatique que sur le rôle de l’adaptation.

Bien que certaines études aient analysé l’impact de l’adoption de mesures d’adap-

tation sur les rendements (Kurukulasuriya et al., 2006) et sur l’exposition aux risques

(Di Falco and Veronesi, 2014), il est possible que leurs conclusions soient biaisées, faute

de prendre en compte certaines variables climatiques (Nkemdirim, 1991; Lawrence, 2005)

et à cause de l’endogénéité potentielle d’un facteur clé de la décision d’adaptation : l’accès

aux activités non-agricoles (Donaldson, 2018).

Dans cette thèse, j’analyse l’impact de l’adoption de mesures d’adaptation aux
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changementz climatiques sur plusieurs facettes de l’activité agricole, tout en prenant soin

d’adopter des approches méthodologiques rigoureuses pour garantir la validité des résul-

tats. Le premier article étudie l’effet de ces mesures sur les rendements et détermine les

gains associés à chaque stratégie d’adaptation, identifiant ainsi les meilleures. Le second

article s’intéresse aux effets des stratégies d’adaptation sur l’exposition aux risques clima-

tiques. Le troisième, quant à lui, évalue les bénéfices économiques associés à la mise en

œuvre de sept mesures d’adaptation au Lac Saint-Pierre au Québec, destinées à enrichir

les services écosystémiques et bénéficier à la pêche en eau libre. Ces services écosys-

témiques jouent un rôle crucial pour l’obtention de meilleurs rendements agricoles en

contribuant à la fertilité des sols, à la lutte contre les parasites et à la pollinisation. L’ana-

lyse des rétombés économiques des mesures d’adaptation aux changements climatiques

dans un pays dévélopé (Canada) est ainsi effectuée dans le dernier article.
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AVANT-PROPOS (ARTICLE 1) : THE ROLE OF ADAPTATION TO CLIMATE

CHANGE IN ENHANCING AGRICULTURAL YIELDS : EVIDENCE FROM

AFRICA

L’article 1, dont le titre est "The Role of Adaptation to Climate Change in Enhan-

cing Agricultural Yields : Evidence from Africa", a été rédigé entièrement par l’étudiant.

Il sera soumis dans la revue World Development et Journal of Development Studies.



ARTICLE 1

THE ROLE OF ADAPTATION TO CLIMATE CHANGE IN ENHANCING
AGRICULTURAL YIELDS : EVIDENCE FROM AFRICA

1 INTRODUCTION

The expanding body of economic literature has increasingly focused on understan-

ding and projecting the impacts of climate change on agriculture. This includes seminal

works such as those by Burgess et al. (2017), Burke et al. (2015), Deschênes and Greens-

tone (2012), Fisher et al. (2012), Mendelsohn et al. (1994), and Schlenker and Roberts

(2008), which collectively underscore the critical influence of weather on plant physio-

logy, a topic also explored by Hoffman and Jobes (1978). The extent and nature of climate

change implications on agriculture are influenced by a variety of factors. These include

regional climatic variations, as discussed in studies by Deschênes and Greenstone (2007)

and Zhang et al. (2017), the diversity of crop types as investigated by Di Falco and Vero-

nesi (2013), and the adaptive capacities of agricultural practitioners, a subject of research

by Di Falco et al. (2011). Each of these elements plays a vital role in determining how

agriculture, as a sector, responds to and is affected by the changing climate.

In Sub-Saharan Africa, a substantial portion of the agricultural population, who

often work on small plots of land typically less than a hectare, faces significant chal-

lenges related to agricultural productivity. These difficulties, as noted by Di Falco and

Chavas (2009), encompass a range of issues from below-optimal land yields to the unpre-

dictability and impact of extreme weather events. Such conditions frequently lead to poor

harvests and consequent food shortages. The current discussion in the literature, like that

of Kurukulasuriya et al. (2006), places a strong emphasis on food productivity, a crucial

factor in the subsistence agricultural sector of Sub-Saharan Africa.

Small-scale farmsteads play a pivotal role in this region, contributing to an esti-

mated 95% of the farm output and thus forming the backbone of food security and access.

Hopkins and Hüner (1995) highlight that approximately three-quarters of this agricultu-
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ral production is destined for consumption within the farming households themselves.

This reliance on small-scale, often subsistence farming underlines the critical nature of

agricultural productivity in the region. Sub-Saharan Africa’s dependence on a mono-crop

economy and rain-fed agriculture ties its development prospects closely to climatic va-

riations. This connection is underscored in Lobell et al. (2013), where the critical impact

of climate on agriculture in this region is explored. The vulnerability of this agricultural

system to climate change underscores the need for adaptive strategies and highlights the

region’s unique challenges in ensuring food security amidst environmental changes.

This research contributes to contemporary academic discourse by exploring the

extent to which climate adaptation measures are adopted and their impact on the yields of

six different crops. The study utilizes a distinctive dataset from a survey conducted by the

United Nations Development Programme in 2015, covering four African countries. This

dataset includes responses from 1,811 households that have implemented climate adapta-

tion measures and 3,280 households that have not. The individual and voluntary nature of

climate change adaptation suggests that the practices of farmers who have adapted may

significantly differ from those who haven not.

To analyze this data, this study employs endogenous switching regression model

approaches. This methodology is augmented by using various information sources—like

radio, television, and social media—as instrumental variables for the adaptation decision.

These information channels are crucial as they provide farmers with strategic advice de-

signed to counteract the negative impacts of climatic variability on agricultural yields by

encouraging adaptation. This research presents prior litterature, and falsification tests to

indirectly evaluate the exclusion restriction criterion relevant to these information chan-

nels. This approach ensures a robust and reliable analysis of the data.

Furthermore, the study incorporates additional climatic variables such as evapo-

ration, wind velocity, and solar duration into its analysis. Relying solely on temperature

and precipitation as indicators, as cautioned by Zhang et al. (2017), might lead to skewed

assessments of adaptation outcomes. These climatic factors are intricately connected, as

shown in studies by Lawrence (2005) and Wooten (2011), and are subject to changes in

distribution patterns due to climate change, as observed by Hartmann et al. (2012). Addi-

tionally, these supplementary climatic metrics are crucial in understanding crop physio-

logy and productivity, highlighted in research by Nobel (1981) and Zhang et al. (2017). By
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considering these broader climatic variables, the study aims to provide a more comprehen-

sive and accurate evaluation of the effects of climate adaptation strategies on agricultural

yields.

The results of this study reveal that households implementing climate adaptation

measures experience notably higher agricultural yields compared to those that do not. On

average, households that have adapted to climate change report a yield of 1,489.7 kilo-

grams per hectare, which is 281.1 kilograms per hectare more—a 23.3% increase—than

the average yield of 1,208.6 kilograms per hectare among non-adapted households. This

significant difference underscores the effectiveness of adaptation measures in enhancing

agricultural productivity. Moreover, the impact of adopting these adaptation measures ap-

pears to vary depending on the type of crop and the country in question. The variability

in climate, types of crops grown, and agricultural practices in different regions can lead

to varying outcomes from the implementation of adaptation measures. Factors such as the

availability of resources, existing infrastructure, and the level of government support play

a crucial role in the success of these adaptation measures, as discussed in the work of

Toensmeier (2016).

Therefore, it is vital to consider the unique circumstances of each country when

evaluating the efficacy of climate change adaptation strategies in the agricultural sector.

This approach is emphasized in studies by Araújo and Rahbek (2006) and Atube et al.

(2021), which suggest that crafting adaptation strategies that are specifically tailored to

the distinct climatic conditions and crop varieties of each nation is key to effectively

addressing the challenges posed by climate change in agriculture. Such contextualized

strategies are essential for optimizing agricultural yields and ensuring food security in the

face of changing environmental conditions.

This research investigates two critical factors—access to financial working capital

and information sources—that contribute to the disparities in agricultural yields between

farmers who have adapted to climate change and those who have not. The study uncovers

that farmers who have adapted have better access to working capital compared to those

who haven’t. Moreover, improved access to information significantly enhances the likeli-

hood of farmers adapting to climate change. These elements are vital as they influence the

decision to adapt, yet access to these resources is limited among the participating farmers.

It’s concerning that only a minority of farmers have access to these crucial resources,
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highlighting the acute constraints in credit and information accessibility for farmers in

developing countries, particularly in Sub-Saharan Africa, as indicated in studies by Bur-

gess et al. (2017) and Guiteras (2009).

The scarcity of credit availability for funding modern agricultural inputs is a no-

table challenge in developing countries. Research focusing on input financing and the role

of credit in Sub-Saharan Africa reveals a dual gap : not only in financial resources but also

in knowledge regarding modern agricultural inputs (Di Falco et al., 2011; Guiteras, 2009).

This suggests that challenges in both financing and information access need to be addres-

sed. In regions dominated by subsistence farming, farmers often encounter limited cash

access and market influence, impeding their ability to drive growth in agriculture, as des-

cribed in Bjornlund et al. (2020). (2020). The financial markets in developing countries,

and particularly in Sub-Saharan Africa, are often underdeveloped and inefficient, which

further restricts smallholder farmers’ access to formal credit, as highlighted in the work

of Chivandire (2019).

This study contributes to the existing literature in several ways. First, it discusses

the importance of access to working capital and information sources in farmers’ decision-

making regarding climate change adaptation. Previous studies (Di Falco et al., 2011; Gui-

teras, 2009; Mendelsohn and Dinar, 2003) explored the relevance of these factors, but

their external validity was limited. This research expands the discourse by examining

these drivers of adaptation in four African countries, utilizing a unique dataset. Second,

the study evaluates the importance of climate variables beyond temperature and rainfall

at a micro-level. Research by Zhang et al. (2017) was the first to scrutinize the relevance

of additional climate variables at the county level in China, showing that excluding these

variables could lead to biased predictions of climate change impacts on crop yields. By

including these additional climate variables, this study’s results may offer a less biased

perspective. Finally, the research reveals some heterogeneous effects in the causal impact

of adaptation on yields.

The paper is structured as follows : it begins with the next section, which delves

into the background and context of the countries under study, setting the stage for the re-

search. Section 3 describes the methodological approaches and the econometric models.

Section 4 presents the survey design and data description. Section 5 presents the estima-

tion results. Finally, the paper concludes with Section 6, summarizing the key findings
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and implications.

2 BACKGROUND AND CONTEXT

In this study, I utilize survey data from the United Nations Development Pro-

gramme (UNDP) collected in four African countries : Burkina Faso, Uganda, Sierra

Leone, and Sao Tome and Principe. These countries’ development prospects depend hea-

vily on the climate, as they rely on rainfed agriculture and have limited economic diver-

sification. As a result, they are highly vulnerable to the impacts of climate change, with

constrained response capacities. Additionally, climate change and environmental degra-

dation have led to increased displacement and migration. Sub-Saharan Africa alone has

witnessed 86 million internal climate migrants, according to a 2020 report by the World

Bank.

2.1 Burkina Faso

In Burkina Faso, agriculture accounts for approximately 33% of the Gross Domes-

tic Product (GDP). It employs around 80% of the population, according to the Food and

Agriculture Organization’s 2012 report. The sector is predominantly made up of small-

holder farms. It is characterized by low productivity in both crops and livestock, coupled

with limited participation from the private sector. The majority of agricultural producction

is geared towards self-consumption. Despite facing numerous challenges, the farm sec-

tor in Burkina Faso possesses the potential to significantly improve productivity across a

variety of crops, as indicated by the World Bank Group in 2017. During the 2014-2015

agricultural season, cereal production was estimated at 5.7 million tons, representing a

17.9% increase from the previous season and a 32.7% increase compared to the average

over the preceding five years (INADES, 2013).

2.2 Sao Tomé and Principe

Agriculture plays a crucial role in the economy of Sao Tome and Principe, contri-

buting approximately 20% to its GDP and comprising 80% of its export earnings. It em-

ploys around 60% of the population, with a workforce primarily consisting of smallhol-

der farmers (Agence Française de Développement, 2010). Critical agricultural products

include cocoa, with an annual production of about 3,000 tons, alongside coffee, pepper,



25

and various food crops like bananas, tubers, and vegetables. Despite its significance, the

agricultural sector in Sao Tome and Principe is characterized by low productivity, a lack

of structure, and a heavy reliance on external aid (Agence Française de Développement,

2010).

2.3 Sierra Leone

Agriculture is a cornerstone of Sierra Leone’s economy, with about two-thirds

of the active population engaged in this sector, primarily as smallholder farmers. It ac-

counts for 60% of GDP (US Department of Commerce, 2020). The country’s arable land,

copious rainfall, temperate climate, and numerous rivers create favorable conditions for

plant growth. Despite this, production is mainly subsistence-based, and about 75% of the

5.4 million hectares of fertile arable land remains uncultivated. The primary crops culti-

vated include rice, cassava, maize, millet, cashew, rubber, ginger, vegetables, fruits, and

sugarcane, with significant cash crops such as cocoa, coffee, and oil palm. Livestock rea-

ring is also practiced. In 2014, total crop production was estimated at 2.09 million tonnes,

a 5% decrease from the previous year (FAO, 2014).

2.4 Uganda

Approximately 35% of Uganda’s land is dedicated to agriculture, which contri-

butes 23.7% to its GDP and employs around 70% of the country’s working population.

In the fiscal year 2020/2021, agriculture also accounted for 31% of the country’s export

earnings. The sector’s primary agricultural products include coffee, tea, sugar, livestock,

fish, edible oils, cotton, tobacco, plantains, corn, beans, cassava, sweet potatoes, millet,

sorghum, and groundnuts. Ugandan farmers confront various challenges, such as limi-

ted access to inputs like fertilizers and quality seeds, inadequate irrigation infrastructure,

susceptibility to climate hazards, insufficient packaging facilities, limited storage capa-

bilities, ineffective post-harvest handling practices, restricted access to working capital,

high transportation costs, archaic field management structures, and a lack of current know-

ledge on agricultural best practices, health, and genetics. Rural farmers struggle with poor

transportation infrastructure (U.S. Department of Commerce, 2012). In 2013 and 2014,

cereal production was estimated at 3.5 million tonnes, which was roughly 3% above the

five-year average (GIEWS Country Brief : Uganda, 2015).
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3 METHODOLOGICAL APPROACHES AND ECONOMETRIC MODELS

In this section of the paper, I explore the decisions related to adaptation, the pro-

duction function in agriculture, and present theoretical and econometric models. Drawing

on the foundations of agricultural economic theory (and considering the data at hand),

my approach extends the model proposed by Mendelsohn et al. (1994) by integrating the

choice of adaptation measures into the decision-making process of farmers. In this expan-

ded model, I define the agricultural yield, denoted as yj , for a specific farmer j. This yield

is conceptualized as a function of a diverse range of elements. These elements encompass

the input variables, represented by Cj , and the adaptation strategies chosen by the far-

mer, indicated by Aj . Additionally, the model takes into account the climatic conditions

(Wj), geographic factors (Oj), soil properties (Sj), and various socioeconomic aspects

(Hj) facing a farmer that can influence agricultural output.

It is posited in this model that the farmer, in pursuit of maximizing their produc-

tion, will opt for the most efficient combination of input variables (Cj) and adaptation

measures (Aj). This assumption allows for a nuanced understanding of how different fac-

tors interact and contribute to the agricultural yield of individual farmers, particularly in

the context of adapting to changing climatic conditions.

yj = yj(Cj, Aj,Wj, Sj, Hj, Oj) (1.1)

3.1 The bivariate adaptation decision and agricultural production

3.1.1 Bivariate process of making adaptation decision

In this study, farmers are assumed to make a critical decision : whether to adopt

adaptation measures for climate change. This decision-making process involves a careful

consideration of the net benefits and potential risks. Farmers are essentially faced with

two choices : either adapting to climate change or choosing not to adapt. Each of these

choices results in a different yield outcome – an adaptation yield (yjA) if they decide to

adapt, and a non-adaptation yield (yjN ) if they do not.

The reservation yield, symbolized as %j , effectively encapsulates a farmer’s thre-

shold for adopting climate change adaptation measures. This concept represents the mi-

nimum acceptable level at which a farmer is inclined to implement such measures. The
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decision to adopt adaptation strategies or maintain a non-adaptive approach is influenced

by various factors. These include the farmer’s personal skills, the specific characteristics

of the farm, prevailing climate conditions, the farmer’s previous experiences with extreme

weather events, characteristics of the farm owner and their household, available assets, ex-

perience, alternative income sources, access to credit and sources of information, and the

perceived benefits of opting not to adapt (Di Falco et al., 2011).

In this model, farmer j is assumed to opt for adaptation to climate change if the

following condition is met :
yjA − yjN

yjN
> %j

Put simply, the farmer decides in favor of adaptation if the relative increase in yield due to

adaptation (the adaptation yield differential) exceeds their reservation yield. This concept

of reservation yield, %j , reflects a farmer’s readiness and willingness to undertake adap-

tation measures. If the potential yield gain from adopting a particular adaptation measure

does not meet or exceed the reservation yield, the farmer is likely to decide against adap-

ting.

3.1.2 Reduced-form of the adaptation decision-making process

The decision-making criterion can be formalized using a probit model format. This

indicates that if I∗j > 0, farmer j will choose to adapt to climate change ; otherwise, they

will not (Di Falco et al., 2011; Lee, 1976). Implicitly, both Lee (1976) and Di Falco et al.

(2011) introduce unobserved factors and employ a linear approximation in their models.

They also define the variable Tj as those factors that influence both the adaptation decision

and yields, and Zj as variables that influence the adaptation decision but not yields.

I∗j = T
′
jψ + Z

′
jΛ− ξj

= G
′
jπ − ξj

(1.2)

Where G′
jπ = T

′
jψ + Z

′
jΛ. In this research, the vector Z ′

j comprises nine dummy

variables, each representing a different source of information available to the farmer.

These sources include government agencies, newspapers, radio, TV, mobile phones, and

social media platforms, all of which can provide essential climate-related information to

the farmers. Following the approaches of Di Falco et al. (2011) and Guiteras (2009), these
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variables pertaining to access to information are used as excluded instruments in analy-

zing the adaptation decision. This approach allows for a more nuanced understanding of

how information access influences farmers’ decisions to adapt. Finally, the error term in

this model, denoted as ξj , is assumed to have a mean of zero and a variance represented

by σ2
ξ . This term is designed to capture measurement errors and other unobserved factors

that may influence a farmer’s decision to adapt or not, as suggested by Lee (1976). This

consideration of error term variance is crucial in ensuring the robustness and accuracy of

the model’s predictions regarding adaptation decisions.

The latent variable I∗j symbolizes the potential benefit that a farmer could gain by

adapting to climate change in addition to how information sources might influence the

reservation yield. This variable’s observed counterpart, Ij , represents the actual adapta-

tion status, indicating whether the farmer has chosen to adapt or not. The explanatory

variables are encompassed within the vector Tj , which includes a diverse range of factors.

These factors cover characteristics of the farm household, such as the age and education

level of the farmer, access to working capital, and inputs. Additionally, it includes soil

characteristics, various assets, and geographic factors like latitude and altitude. Climatic

factors are also part of this vector, recognizing their influence on farming decisions.

3.1.3 Reduced-form of the production function

In examining the production function of equation (1.2), there are several functio-

nal forms that could be considered. However, the quadratic specification stands out for

its robustness, as demonstrated in numerous studies. I replace the original variable Aj ,

which indicates the presence of adaptation measures, with the dummy variable Ij . Gi-

ven the uncertainty around the best functional form for these climate variables, I adopt a

methodology similar to that used by Mendelsohn et al. (1994).

yj = β1Ij + T
′

jΘ + υj (1.3)

3.1.4 Endogenous switching regression models

When applying ordinary least squares (OLS) to equation (1.3), there is a risk of ob-

taining biased estimates. This is because the OLS method is valid only under the assump-

tion that the decision to adapt to climate change is exogenously determined. In reality,
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this decision is often endogenous, arising from voluntary and individual self-selection.

Farmers who opt to adapt may possess different characteristics compared to those who

choose not to. Their decisions are likely influenced by the expected benefits of adap-

tation. Furthermore, unobserved attributes of the farmers and their farms can simulta-

neously affect both the decision to adapt and agricultural productivity. This overlap can

lead to inconsistent estimates when evaluating the impact of adaptation on food security,

as discussed in the research by Di Falco et al. (2011). For example, if adaptation is pri-

marily undertaken by the most capable or motivated farmers, not accounting for these

unobserved skills could result in an overestimation of the benefits of adaptation. Additio-

nally, traditional measurement errors in the data could introduce attenuation bias, further

complicating the analysis.

To mitigate these selection biases, I utilize the same endogenous switching regres-

sion model for agricultural yields as Di Falco et al. (2011) did.This model encompasses

two distinct regimes : one for farmers who adapt to climate change, as outlined in Equa-

tion (1.4), and another for those who do not, detailed in Equation (1.5). Each regime is

defined to specifically account for the unique characteristics and outcomes associated with

the respective decision to adapt or not. This approach allows for a more nuanced unders-

tanding of the causal relationship between adaptation strategies and agricultural yields,

providing a clearer picture of the true impact of climate change adaptation on farming

productivity.

yjA = T
′

jAΘA + υjA , Ij = 1 (1.4)

yjN = T
′

jNΘN + υjN , Ij = 0 (1.5)

In the context of Equations (1.4) and (1.5), the symbol Tj is used to denote a vec-

tor that includes various determinants affecting agricultural yields. These determinants

encompass a range of factors, from inputs and soil properties to socioeconomic and geo-

graphic variables. Additionally, υj is introduced in these equations to represent the idio-

syncratic shock, capturing random effects and unforeseen factors that might impact yields.

As previously discussed, the model incorporates the latent variable I∗j , which is

crucial in understanding the decision-making process of farmers regarding adaptation.
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This variable specifically captures the utility or benefit that a farmer anticipates gaining

from adapting to climate change. Complementing this, the dichotomous variable Ij is

employed to indicate the farmer’s observed adaptation status. It serves as a straightforward

representation of whether a farmer has actually implemented adaptation measures or not.

This dichotomous variable, along with the latent variable, plays a key role in the model,

allowing for a deeper analysis of the factors influencing farmers’ decisions to adapt and

the consequent impact on agricultural yields.

Selectivity bias presents a significant challenge to the consistency of estimates

obtained from Equations (1.4) and (1.5). This form of bias typically occurs when the

process of selecting for adaptation affects the composition of the sample being observed,

a phenomenon highlighted in the research by Lee (1982). As a consequence of this bias,

there is a possibility that the error terms υjA and υjN in the regression models for these

equations might be correlated with the error term ξj in the selection equation (1.2). Lee

(1982) has demonstrated that such a correlation suggests that conventional estimation

methods could produce biased parameter estimates.

Given the likelihood of selectivity bias influencing the decision to adapt to climate

change, it is crucial to account for this in the analysis. Lee (1982) proposes a methodo-

logy that addresses this bias by considering the correlation between the error terms in the

outcome and selection models. By acknowledging and adjusting for this potential corre-

lation, the analysis aims to yield more accurate and reliable estimates of the impact of

adaptation measures on agricultural productivity.

This methodological consideration is crucial to ensure that the estimated effects

of adaptation strategies are accurately represented and not biased due to the selection

process inherent in the farmers’ decision-making. It is important to note that the expected

values of the error terms, given the states of adaptation, are non-zero, as indicated by

E(υjA|Ij = 1) 6= 0, and E(υjN |Ij = 0) 6= 0. This implies that the error terms associated

with the decision to adapt (or not) are expected to differ from zero, reflecting the potential

influence of unobserved factors in the decision-making process.

In Lee (1982)’s model, and this research, the error terms in Equations (1.2), (1.4),

and (1.5) are assumed to follow a trivariate normal distribution. This distribution is cha-

racterized by a mean vector of zeros and a covariance matrix, which is denoted by Ω.

In mathematical terms, this can be expressed as (ξ, υA, υN )∼ N(0,Ω). This assumption
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about the distribution of the error terms is a standard approach in such analyses and helps

in simplifying the estimation and interpretation of the model. The variance-covariance

matrix is

Ω =


1 σξA σξN

σAξ σ2
A .

σNξ . σ2
N

 ,

where the variances of the error terms ξj , υjA, and υjN are var(ξ) = σ2
ξ , var(υA)

= σ2
A, and var(υN ) = σ2

N , respectively. The covariance between ξj and υjA is given by

cov(υjA, ξj) = σAξ = ρξAσA, where ρξA is their correlation coefficient. Similarly, the co-

variance between ξj and υN is expressed as cov(υN , ξj) = σNξ = ρξNσN , with ρξN being

their correlation coefficient. According to Lee (1982), a positive selectivity bias is present

when (ρξA > 0 and ρξN < 0), indicating that the sample of farmers who adapt to climate

change tends to have above-average yields. Conversely, a negative selectivity bias occurs

when (ρξA < 0 and ρξN > 0), suggesting that the sample is skewed towards farmers with

below-average yields. Since yA and yN are not observed simultaneously, cov(υA, υN ) is

not defined. I follow Lokshin and Sajaia (2004) and assume that σ2
ξ = 1.

The validity of Lee (1982)’s endogenous switching model relies on one or more

exclusion restrictions, which will be discussed in the section on Instruments. Adopting the

methodology of Lokshin and Sajaia (2004), I apply the full information maximum likeli-

hood (FIML) method to simultaneously estimate the parameters of Equations (1.2), (1.4),

and (1.5). The FIML estimator operates by maximizing the likelihood function, which in-

volves multiplying the density functions for each observation in the sample. This process

also takes into account the correlation between the error terms in the equations. Given the

normality assumption and a joint covariance structure for the error terms, this estimator is

both consistent and efficient, as demonstrated in the work by Lokshin and Sajaia (2004).

The corresponding log-likelihood function is designed to provide a comprehensive and

statistically robust estimation of the model parameters.

ln Lj =
∑N

j {Ij[lnΦ(
G

′
jπ+ρξA

υjA
σA√

1−ρ2Aξ
)− lnσA + ln(φ(

υjA
σA

))]+

(1− Ij)[ln(1− Φ(
G

′
jπ+ρξN

υjN
σN√

1−ρ2Nξ
))− lnσN + ln(φ(

υjN
σN

))]}
(1.6)
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The likelihood function described in Equation (1.6) involves various parameters,

estimations, and calculations. The parameter π is a vector in the function G′
jπ. The corre-

lation coefficients between ξ and υA, and between ξ and υN , are denoted by ρξA and ρξN ,

respectively. The terms σA and σN represent the standard deviations of υA and υN , with

their squared values (σ2
A and σ2

N ) indicating the variances of these terms. Additionally,

υjA and υjN are likely error terms or unobserved variables in the equations for the two

different states (A and N) of the model.

The estimation of the parameters of likelihood function (1.6) is carried out using

the Full Information Maximum Likelihood (FIML) method, designed to maximize the

likelihood function. This maximization process incorporates the product of density func-

tions for each observation within the sample (Maddala and Nelson, 1975). Furthermore,

the estimation method also accounts for the correlation between the error terms present in

the equations, ensuring a more accurate and reliable analysis.

A farmer, denoted by subscript j and characterized by variables Tj , who adopts

adaptation measures is expected to realize yields represented by yjA,

E(yjA|Ij = 1) = E[(T
′
jAΘA + σAξγA + ζjA)|Ij = 1]

= T
′
jAΘA + σAξγA

(1.7)

Where ζjA is a residual term with the expectation E(ζjA) = 0. The variance of ζjA

is given by var(ζjA) = σξjA . Additionally, σAξ represents the covariance between υjA and

ξj . Furthermore, γA = − φ(G
′
jπ)

Φ(G
′
jπ)

, where φ(·) is the standard normal probability density

function, and Φ(·) is the standard normal cumulative density function.

The expected value of yjA, in the counterfactual scenario where the adapted does

not adapt, is defined by

E(yjA|Ij = 0) = E[(T
′
jAΘN + γNσAξ + ζjN)|Ij = 0]

= T
′
jAΘN + γNσAξ + E(ζjN |Ij = 0)

= T
′
jAΘN + γNσAξ

(1.8)

Where ζjN is a residual term with E(ζjN) = 0. The variance of ζjN is given by

var(ζjN ) = σξjN . Moreover, σNξ represents the covariance between υjN and ξj . The term

γN is defined as
φ(G

′
jπ)

(1−Φ(G
′
jπ))

.

For an adapted farmer, represented as j and characterized by Tj , it is anticipated
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that the yields will amount to yjA due to the adoption of adaptation measures. These

measures are predicted to increase the gains from yjN to yjA. The yield improvement as

a result of adaptation, denoted as (∆j = yjA − yjN ), represents the difference in yields

achieved by the farmer with and without adaptation. Hence, ∆j signifies the expected

impact of adaptation on products for a farmer j with characteristics Tj .

∆j = E(yjA|Ij = 1)− E(yjA|Ij = 0)

= (T
′
jAΘA + γAσAξ)− (T

′
jAΘN + γNσAξ)

= T
′
jA(ΘA −ΘN) + (γA − γN)σAξ

(1.9)

3.2 Instruments

In addressing the complexities of selectivity bias and its implications on regression

models, this section delves into the use of Instruments as a pivotal aspect of the Endoge-

nous Switching Regression (ESR) models. It particularly focuses on the employment of

various sources such as newspapers, radio, and television as instrumental variables in cli-

mate change adaptation studies, detailing the process of validation and the critical role

they play in ensuring the robustness of statistical inferences.

3.2.1 Comments on the selectivity bias correcting methods

The decision to adapt to climate change undergoes specific selection processes

that result in observed samples, thereby generating selectivity bias. Specifically, when

disturbances in a regression model correlate with those in the selection equation, selec-

tivity bias emerges given a particular set of exogenous variables. Traditional estimation

methods fail to deliver consistent parameter estimates in such contexts (Lee, 1976). To

tackle this challenge, I use the Endogenous Switching Regression (ESR) models devised

by Lee (1976) and further refined by Lokshin and Sajaia (2004) via the application of the

Maximum Likelihood Estimation (MLE) to the endogenous switching regression.

ESR models present a potent remedy to complex econometric challenges by aptly

addressing endogeneity and selectivity bias issues, which can undermine the credibility of

Ordinary Least Squares (OLS) regression analyses. These models manage endogeneity,

where an explanatory variable correlates with the error term. They also handle selectivity

bias, which surfaces when the sample selection process correlates with the outcome va-
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riable, violating the randomness condition. Moreover, ESR models proficiently capture

distinct regimes or states, wherein the outcome variable and its interaction with expla-

natory variables may fluctuate based on a particular variable’s status. Additionally, they

enable the estimation of simultaneous equations, allowing outcomes from one equation to

influence another, thus providing a comprehensive understanding of the system in ques-

tion.

However, ESR models also come with their own set of intricacies. They require

stringent assumptions such as the normality of error terms and invoke an exclusion res-

triction for the selection equation. This restriction necessitates the presence of at least one

variable that impacts the selection process without directly influencing the outcome.

Drawing from insights gained in previous research, I use information sources like

newspapers, radio, and television as instrumental variables for adaptation variable to cli-

mate change adaptation. The selection of these instruments is based on the premise that

access to information plays a crucial role in a farmer’s decision-making process regar-

ding adaptation measures. To ensure the effectiveness of these instruments in the results

section, it is essential to validate them thoroughly. This validation involves two key steps.

First, I examine the relevance of these instruments through probit estimations and first-

step equations. This process helps to establish whether these information sources are si-

gnificantly associated with the adoption of adaptation measures. It provides a statistical

basis for using these sources as instrumental variables.

Second, to further validate the instruments, I assess the validity of the exclusion

restriction. This involves applying theoretical arguments to justify why these instruments

affect the outcome directly only through (armers’ adaptation decisions and not directly

or through any other channel (section 3.2.2). In addition to theoretical justifications, I

conduct falsification tests. These tests are designed to check for any effects of the instru-

ments on the outcome in a context where the exclusion restriction is not, implies they do

not. This is a critical aspect of maintaining the integrity and accuracy of the instrumental

variable approach. Through these rigorous validation steps, I aim to establish a robust and

credible framework for analyzing the impact of information access on farmers’ adaptation

decisions.
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3.2.2 Theoretical arguments for the exclusion restriction

Media platforms such as radio and television, which have widespread accessibility

even in primarily agricultural rural areas, play an essential role in disseminating crucial

climate and adaptation information to a broad audience (Popoola et al., 2020). These

channels are instrumental in increasing awareness and educating individuals about the

impact of climate change on agriculture and the requisite adaptation measures. They offer

insights into innovative adaptation techniques, water and soil management practices, and

environmentally friendly agricultural methods (Goonetilleke and Vithanage, 2017). Ad-

ditionally, they provide consistent weather updates and details on current and projected

climate conditions, enabling farmers to adjust their agrarian activities accordingly (NASA

Climate Change Solutions, 2021).

Information sources facilitate the rapid and real-time relay of climate change data,

ensuring that farmers receive prompt weather advice and forecasts, which inform their

agricultural decisions (World Bank Feature on Adaptation Principles, 2020). Particularly

in developing countries, farmers rely on this information to enhance their yields. Guiteras

(2009) emphasizes that access to information is a strong determinant of climate change

adaptation, aligning with other research that underscores the pivotal role of information

sources in climate change adaptation (Burgess et al., 2017; Di Falco et al., 2011; Di Falco

and Veronesi, 2014).

Access to information for farmers can occur through a variety of channels, as

highlighted in the literature. These channels range from personal purchases to consulta-

tions with relatives, involvement in farmers’ associations, interactions with government

entities, and collaborations with non-profit organizations, as detailed by West and Bogers

(2014). Moreover, farmers can also gather information from their resources if they are fi-

nancially capable, or through social networks such as friends, family, and acquaintances.

Neighbors, particularly other farmers or workers, associations, farmer support organiza-

tions, and religious institutions like churches and mosques, serve as additional sources

of information, as observed by Yaseen et al. (2016). Furthermore, announcements from

local chieftainships, notabilities, or officials also play a role in disseminating information.

Interestingly, some studies suggest that access to information may not be directly related

to a farmer’s income. Mittal and Tripathi (2009) notes that the impetus for seeking various

information sources is often driven by farmers’ desire to enhance their agricultural out-
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puts, including adopting adaptive techniques. Consequently, farmers who are primarily

engaged in agriculture are more likely to actively seek this information.

The nature of information from these sources is typically independent of the indi-

vidual decisions and actions of farmers, as mentioned by Babu and Glendenning (2019).

The content disseminated through these channels often relates to broader issues rather

than local factors impacting agricultural production, as explained by Kahan et al. (2008).

This is because the content is curated and shared on a larger scale—either nationally or

regionally—and thus remains external to specific local conditions, a point emphasized

by Vidanapathirana (2012). In a similar vein, Abdulai and Huffman (2014) investigated

the factors influencing African farmers’ decisions to adopt soil and water conservation

technologies and their impact on farm yields and net returns. Their findings indicate that

variables representing information sources are valid as selection instruments for decisions

to adopt such technologies. This body of research collectively underscores the signifi-

cance of diverse information channels in influencing farmers’ decision-making processes,

particularly in the context of adopting new agricultural practices and technologies.

3.2.3 Falsification testing for the exclusion restriction

The exclusion restriction is a foundational assumption for instrumental variable

(IV) estimation. It posits that information sources influence agricultural yields exclusi-

vely through their effects on adaptation decisions, implying that, after accounting for

other covariates, there should be no direct relationship between the information sources

and production. Such an assumption is crucial as it ensures that the instruments correlates

only with the exogenous variation in the endogenous variable, enabling the consistent

estimation of causal effects. Empirical verification of the exclusion restriction is challen-

ging since it often relies on theoretical arguments and domain-specific knowledge, as it

involves unobservable counterfactuals (Keele et al., 2019). Nonetheless, one can some-

times indirectly test the exclusion restriction through falsification exercises, which pro-

vide instances of refutability (Angrist and Krueger, 1999).

Falsification tests arise from the idea that causal theories can yield predictions not

only about the presence of causal effects but also about their absence (Rosenbaum, 2002;

Lipsitch et al., 2010). For instance, knowing a subset where the instrument does not affect

the exposure allows us to infer that any observed correlation between the instrument and



37

the outcome in that subset likely results from a breach of the exclusion restriction (Altonji

et al., 2005; Kang et al., 2013).

In their research, Di Falco et al. (2011) utilized data from 2,807 Ethiopian far-

mers to explore the factors influencing farm households’ decisions to adapt to climate

change and the subsequent impact on food productivity. They employed a simple falsi-

fication test to validate the use of information sources as selection instruments for the

adaptation variable. This test determines whether these instruments influence the adap-

tation decision without affecting the yields of those farm households that did not adapt.

Their results show that information sources are statistically significant drivers of the adap-

tation decision to climate change (χ2 = 71.93 ; p=0.00) but do not influence the quantity

produced per hectare by non-adapting farm households (F-stat = 1.20, p = 0.35). Later

studies (Di Falco and Veronesi, 2013, 2014) corroborated these findings, confirming that

information sources are valid selection instruments for climate change adaptation deci-

sions.

In this study, I employ this commonly-used falsification test to indirectly assess the

exclusion restriction (Altonji et al., 2005; Kang et al., 2013; Keele et al., 2019; Labrecque

and Swanson, 2018; Pizer, 2016; Van Kippersluis and Rietveld, 2018). Applying this

falsification test to my data leads to the estimation of an alternative equation, which is

denoted as Equation (1.3). This alternative formulation omits the treatment variable Ij

but includes Zj , the variable representing information sources :

yj = ZjΘ + TjΓ + εj , for j s.th Ij = 0 (1.10)

In the context of my research, Equation (1.10) is specifically estimated for far-

mers who have not adapted to climate change. A critical aspect of this estimation involves

examining the significance of the estimated parameters (Θ̂) for the information source va-

riables. If these estimated parameters are not jointly significant, it implies that there is no

substantial evidence to reject the exclusion restriction. This outcome would suggest that

the exclusion restriction—a key assumption in instrumental variable analysis—is likely

valid (Altonji et al., 2005; Di Falco et al., 2011; Labrecque and Swanson, 2018; Kang

et al., 2013; Pizer, 2016).This test uses the F-statistic to evaluate the null hypothesis,

which posits that the information sources (used as instruments) are not correlated with

the error term in the yield equation. The alternative hypothesis, in contrast, suggests that
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the instrument directly influences the yield variable among non-adapters, thereby viola-

ting the exclusion restriction.

3.2.4 Analysis of an additional endogeneity issue

Access to nonfarm activities emerges as a significant determinant in farmers’ deci-

sions to adapt to climate change, and it is important to consider its potentially endogenous

nature. For instance, as Donaldson (2018) demonstrate, having access to railroads can si-

gnificantly boost trade and subsequently nonfarm activities. In a similar vein, proximity

to paved roads may enhance opportunities for engaging in nonfarm activities, especially

for farmers located near urban areas. These farmers can benefit from additional income

streams, which might reduce their motivation to adapt to climate change.

Given these considerations, it is crucial to treat access to nonfarm activities as a

potentially endogenous variable in the analysis. To address this, I follow the methodology

proposed by Donaldson (2018) and use ’distance from farmers’ residences to major paved

or tarred roads’ as an instrumental variable for access to nonfarm activities. This choice

of instrument is based on the assumption that the distance to major roads is likely to in-

fluence the likelihood of engaging in nonfarm activities, yet is exogenous to farmers’ indi-

vidual adaptation decisions. The effectiveness of this instrument can be evaluated through

the first-stage F-statistic, which, in this case, is 37.4. This value is significantly above the

commonly recommended threshold of 10, suggesting that the instrument is not weak. This

finding aligns with the guidelines set forth by Stock and Yogo (2002) on testing for weak

instruments. A robust instrument, as indicated by a high F-statistic, ensures that the ins-

trument effectively predicts the endogenous variable (access to nonfarm activities) while

not being correlated with the error term in the yield equation, thereby lending greater

credibility to the analysis.

3.3 The multivariate adaptation decision and agricultural production

3.3.1 Multivariate process of making adaptation decision

The investigation into how individual adaptation measures affect agricultural

yields is critical for farmers, scientists, and governmental organizations. This research

provides valuable insights, helping farmers make informed decisions about the most

beneficial strategies to employ. These decisions are a delicate balance between cost-
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effectiveness and yield optimization. Scientists can focus their research on enhancing

the most promising adaptation strategies, while governments and organizations can better

allocate funding to the most impactful practices. Identifying the most effective adapta-

tion measures is essential in improving agricultural productivity and enhancing resilience

against climate change.

To delve deeper into this matter, I propose modifying equation (1.2) by replacing

Ij with Jjs, a latent variable that represents utility. The modified adaptation decision can

be modeled as follows :

J∗js = G
′
jφs − ϑjs with Js =



1 iff J∗j1 > maxk 6=1(J∗js) or ωj1 < 0

2 iff J∗j2 > maxk 6=2(J∗js) or ωj2 < 0

... ... ... ...

N iff J∗jN > maxk 6=N(J∗js) or ωjN < 0

(1.11)

Where ωjs = maxk 6=1(J∗js). The term ωjs is defined as the maximum of J∗js across

all choices except the one in question. The vector Gj , as defined in equation (1.2), in-

cludes all the determinants and explanatory variables for each adaptation strategy. The

idiosyncratic term ϑjs is assumed to follow a Gumbel distribution and is independent and

identically distributed, maintaining the Independence of Irrelevant Alternatives (IIA) as-

sumption. Consequently, the model aligns with a multinomial logit framework, as outlined

by McFadden et al. (1973). The probability of a farmer j is denoted by Pjs,

Pjs = P (ωjs < 0|Gj) =
exp(G

′
jγs)∑N

j=1 exp(G
′
jγj)

(1.12)

3.3.2 Reduced-Form of the production function

Each adaptation measure, denoted as s, is linked to an equation of agricultural out-

put yjs. Here, yjs signifies the yield outcome for farmer j when they employ the adaptation

strategy s. This linkage is crucial as it enables an assessment of the impact that various

adaptation strategies have on agricultural productivity. The relationship is represented by

the following equation :

yjs = ΓJs + T
′

jΘs + ηjs (1.13)



40

In this equation, the vector variable Js includes N modalities, each corresponding

to a different adaptation measure. This setup facilitates an in-depth evaluation of how

different adaptation strategies influence agricultural yields.

3.3.3 Endogenous switching regression models

For each adaptation measure s, there is an associated yield equation yjs. Thus,

yjs = T
′

jΘs + ηjs (1.14)

The vector Tj , as defined in equation (1.3), represents the determinants of agricul-

tural yields 1.

Building on Bourguignon et al. (2007), I can express the yield equation with the

corrected selectivity bias as :

yjs = T
′

jΘs + σs[r
∗
sm(Pjs) +

s−1∑
i=1

r∗im(Pji)
Pji

(Pji − 1)
] + ξjs (1.15)

For farmer j the probability of choosing adaptation measure s is represented by

Pjs. The correlation between the error terms of the yield equation (ηjs) and the selection

equation (ϑjs) is denoted by rs. A positive value of rs suggests a positive selection bias,

whereas a negative value indicates a negative selection bias. The magnitude of rs quanti-

fies the extent of the selectivity bias. The bias correction term for each adaptation measure

s given by m(Pjs) =
∫
J(ξ − logPjs)g(ξ)dξ, is defined where J(.) is the inverse of the

normal cumulative distribution function and g(.) is the density function for the Gumbel

1. Although various methodologies have been proposed to address selectivity bias in multivariate
variables, the correction techniques presented by Heckman (1979), Lee and Trost (1978), Lee (1982), and
Mincer (1974) are not suitable for our context because the multivariate variable Js encompasses more than
two categories. Furthermore, these methods assume a univariate transformation. Lee (1983) offered a ge-
neralized version of the method in Lee (1982) to tackle selectivity bias. However, the correlation between
ϑjs and ηjs could induce a selectivity bias that the methodology in Lee (1983) does not rectify. Moreover,
Lee (1983) assumes that the joint distribution of (ϑjs,ηjs) is independent and identically distributed, much
like ϑjs and ηjs individually, which may not always hold true. Dubin and McFadden (1984) formulated a
model to correct selectivity bias in multivariate cases, requiring L categories to generate the L− 1 selection
term. Nevertheless, their approach may not be sufficiently robust for maximum likelihood estimation using
full information when the number of alternatives is more than two. Both Dahl (2002) and Schmertmann
(1994) proposed selectivity bias correction models for multivariate variables, assuming that −ηjs − ηj1 are
independent, identically distributed, and share the same sign. However, this assumption can be considered
stringent in empirical research, as noted by Huesca et al. (2010). Bourguignon et al. (2007) introduced a
bias correction approach for multivariate scenarios wherein the selection procedures adhere to a polychoto-
mous normal model, allowing for possible correlations between alternatives. Their model contemplates the
correlation between the error terms ϑjs and each outcome equation’s error terms ηjs.
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distribution. Here, ξjs, the error term, is expressed as ηjs + logPjs. Consequently, the

number of bias-corrected terms in each equation is equal to the number of choices in

the multinomial logit model, denoted by N .By incorporating these bias-corrected terms,

Equation (1.15) yields a consistent estimation of yield parameters through maximum li-

kelihood estimation, assuming the model’s distributional assumptions are valid.

Following Bourguignon et al. (2007), the expected yield for a farm household j

that uses adaptation measure s, with s = 2, . . . , N (where s = 1 serves as the reference

strategy of non-adaptation), can be expressed as :

E(yj|Jj = s) = T
′

jΘs + σs[r
∗
sm(Pjs) +

N∑
i 6=s

r∗im(Pji)
Pji

(Pji − 1)
] (1.16)

In the counterfactual case, if the farmer j adopts a strategy q that is different from

s (where q 6= s), his expected yields would be :

E(yj|Jj = q) = T
′

jΘq + σq[r
∗
qm(Pjq) +

N∑
i 6=q

r∗im(Pji)
Pji

(Pji − 1)
] (1.17)

The impact of adopting strategy s instead of strategy q can be quantitatively ex-

pressed as follows :

∆js = E(yjs|Aj = s)− E(yjq|Aj = q)

= T
′
j (Θs −Θq) + [σsr

∗
sm(Pjs)− σqr∗jm(Pjq)] + [σs

∑N
k 6=s r

∗
km(Pjk)

Pjk
(Pjk−1)

−σj
∑N

i 6=q r
∗
im(Pji)

Pji
(Pji−1)

]

(1.18)

4 SURVEY DESIGN AND DATA DESCRIPTION

Due to the absence of direct measurements of farmers’ incomes in my database,

I have chosen to use their farm yields as a proxy. This approach enables me to explore

the relationship between the adoption of climate change adaptation measures and farm

yields. My focus is specifically on farmers whose primary occupation is agriculture and

who primarily rely on the sale of agricultural products as their main source of income.
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This investigation aims to understand how engagement in agricultural activities and the

adoption of various adaptation strategies correlate with the yields they achieve, thereby

offering insights into the economic impact of these strategies.

4.1 Survey data

I utilize data from a survey carried out by the United Nations Development Pro-

gramme (UNDP) in 2016. This survey encompassed 5,091 farmers from four African

countries, offering a broad perspective on agricultural practices across different regions.

The distribution of the participating farmers was as follows : 2,572 from Burkina Faso,

314 from Sao Tome and Principe, 195 from Sierra Leone, and 2,010 from Uganda. The

sampling frame employed by the UNDP was meticulously designed to accurately re-

present farmers at the district level. This was achieved by covering a range of traditio-

nal agroecological zones within these countries, ensuring that the diversity of agricultural

conditions was adequately captured. To achieve a representative sample, districts within

each country were selected based on their proportional representation within the respec-

tive country’s stratum. The survey was comprehensive, collecting extensive information

on several key areas. Additionally, the survey delved into understanding farmers’ percep-

tions of climate change and the specific adaptation measures they had adopted in response

to these changes. This wealth of data provides a valuable foundation for analyzing the im-

pact of various factors on agricultural productivity and adaptation strategies in the context

of climate change.

In the areas surveyed for this study, approximately 91% of the land is reliant on

rainfed agriculture. Labor is a crucial input in the production process, encompassing ac-

tivities such as land preparation, planting, and post-harvest processing. To quantify labor

inputs, they were categorized into three groups : adult male labor, adult female labor, and

children’s labor. These were then combined into a single labor input metric using adult

equivalents, following the standard conversion factor commonly used in the literature

on developing countries. According to this convention, adult female and children’s labor

were converted to adult male labor equivalents using rates of 0.8 and 0.3, respectively, as

noted by Di Falco et al. (2011). The surveyed plots were used to grow a total of sixty-eight

different annual crops. Of these, the five primary crops – maize, rice, sorghum, cassava,

and millet – constituted 74% of the primary crops cultivated by the farmers in the study.
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When it comes to climate perceptions, the majority of farmers in the study no-

ted significant changes in key climate variables. For instance, 67% of farmers observed

that temperatures have risen, while 70% reported that rainfall patterns have become less

frequent and drier. Specifically, 41% of farmers noted long-term changes in at least one

climate variable, such as temperature, rainfall, drought, flooding, agricultural pests and

diseases, severe winds, hail storms, and riverine flooding. Among these farmers, 88%

reported an increase in temperature, while 76% indicated that rainfall has become less

predictable or drier. Additionally, 63% observed an increase in droughts over the past five

years, and 58% noticed a rise in the frequency of flooding. Furthermore, 56% reported

an increase in severe winds, and 89% observed more frequent riverine flooding. About

46% of farmers noticed more frequent hail storms, and around 15% reported long-term

changes in the frequency of landslides.

These observations suggest that farmers are already feeling the effects of climate

change, which may be driving them to adopt adaptation strategies to safeguard their li-

velihoods. As shown in Table 1.1, the main adaptation strategies employed by farm hou-

seholds include altering planting dates (49.2%), changing crop types (15.1%), using dif-

ferent crop varieties (5.1%), adjusting irrigation schedules (4%), modifying fertilizer use

patterns (4%), and planting wind-resistant trees (3.4%). Collectively, these strategies re-

present 80.8% of all adaptation methods adopted by the farmers in the study.

Table 1.1 –
Adaptation strategies to climate change

Strategies Frequency Percentage (% )

Changing planting dates 891 49.2
Changing irrigation schedule 73 4
Changing fertilizer use pattern 72 4
Changing crop types 274 15.1
Using different crop varieties 92 5.1
Make irrigation investment 32 1.8
Planting wind-resistant trees 62 3.4
Others 315 17.4

Notes : Awé, 2024. Subsample of farm households that adapted at the plot le-
vel (sample size = 1,811).
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4.2 Climate data

I sourced climate variables using WorldClim data and ArcMap, a sophisticated

geographic information system application. These climate variables were assigned to each

farm household based on their specific geographic coordinates, including latitude, lon-

gitude, and elevation. It is important to note that while the Thin Plate Spline method

is commonly employed in literature for creating spatial climate datasets and assigning

household-specific climate values (as detailed in studies by Daly (2006), and Wahba

(1990)), this method yields interpolated data that includes a margin of error. In my study, I

opted for ArcMap to generate climate data, as it offers higher precision and thus increased

accuracy in the analysis.

The literature underscores the sensitivity of crops to seasonal climate variations,

as explored in studies by Mendelsohn and Dinar (2003) and Schlenker et al. (2005). In this

study, I define four seasons—winter, spring, summer, and fall—based on the crop farm

data and the midpoint of key rainy seasons in Africa, following the approach suggested by

Kurukulasuriya et al. (2006). These seasonal definitions are crucial for accurately captu-

ring the impacts of each climate variable on agricultural outcomes, such as the regulation

of insect pests by winter temperatures, the facilitation of optimal crop growth in moderate

summer conditions, and the provision of favorable fall temperatures for crop harvesting.

Table 1.2 presents summary statistics from the 2016 UNDP survey data alongside

WorldClim version 2.1 climate data for the period 1970-2000. The table includes seasonal

and per farm household averages for temperature, rainfall, solar radiation, wind speed, and

evaporation for these years 2. Additionally, the table reports the average annual production

per hectare for crops under adaptation measures and those not adapted in 2016, which

were 1,488 kilograms and 1,054 kilograms, respectively. It is worth noting that the climate

data covers slightly different periods. The countries included in this study represent a

variety of climate zones within Africa, each with unique rainfall patterns. Sections 3 to

6 of Table 1.2 detail the average values of assets, inputs used, and characteristics of the

farm household head and household.

2. Temperature measured in degrees Celsius (°C) ; rainfall in millimetres (mm) ; evaporation rate
in kilopascals (kPa) ; solar radiation in kilojoules per square meter per day (kJ m−2 day−1), indicating the
amount of solar energy received on a given surface area during 24 hours ; wind speed in meters per second
(m s−1), representing how far the wind travels in one second.
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Table 1.2 –
Descriptive statistics of the factors determining agricultural yields

Total sample Adapted Nonadapted
variable name mean std. error mean std. error mean std. error
adaptation 0.435 1.00 0.00
yield 1,267.09 1,379.86 1,488.18 1,563.36 1,053.6 955.40
machinery 0.61 .5 .92 .27 .49 .33
labor 186.0 27.84 174.06 33.24 197.70 44.48
inorganic fertilizer 586.58 569.9 832.81 454.15 347.07 569.13
organic fertilizer 844.65 1048.8 1287.48 1061.29 404.31 827.62
pesticide powder 227.40 332.1 327.16 315.71 129.4781 318.38
pesticide liquid 227.3 331.5 329.23 320.58 127.16 310.90
seed 180.24 210.1 279.18 209.54 83.27439 159.34
irrigation .61 .48 .95 .19 .48 .50
literacy 0.62 0.49 .45 0.45 .68 .47
male 0.82 .38 .89 .31 .80 .40
age 45.8 13.7 47.78 13.50 45.04 13.7
household size 8.1 5.75.7 9.44 7.45 7.61 4.75
relatives 7.31 5.9 8.54 7.47 6.83 5.04
access to credit 0.23 0.41 .28 .42 .20 .40
off-farm job 0.21 0.41 .30 .46 .17 .37
computer .03 0.17 .01 .10 .04 .19
drought exper. 0.39 .48 .43 .49 .38 .48
flood exper .05 .22 .04 .20 .05 .22
pests exper 0.26 0.50 .25 .43 .27 .44
wind exper .18 .38 .10 .30 .21 .40
storms exper .03 .17 .01 .08 .04 .19
flooding exper .04 .18 .03 .17 .03 .18
landslides exper .01 .07 .01 .06 .01 .08
latitude 2.61 .04 6.62 .06 1.06 .04
altitude 517.97 2.28 398.34 2.83 562.17 2.92
access extension .19 .00 .20 .01 .17 .00
farmer association .11 .01 .13 .01 .1 .01
sample size 5,091 1,811 3,280
Notes : Awé, 2024. The sample size references the total number of households. The
final dataset includes data from 5,091 agricultural households. All data presented
are sourced from the household dataset.

5 RESULTS

Tables 1.4 and A.2 display the estimated results for the simultaneous Equations

(1.2), (1.4), and (1.5). These estimates were obtained using the Full Information Maxi-

mum Likelihood (FIML) method, with standard errors that are clustered at the district

level. This methodological choice is grounded in its ability to handle the complexities and

interdependencies inherent in simultaneous equations 3. For comparison, column (2) pre-

sents the Ordinary Least Squares (OLS) estimation of the yield function, which includes

the adaptation dummy variable and a range of control variables.

Columns (1), (3), and (4) of the tables provide the estimates obtained using the

3. The FIML estimation was carried out using the "movestay" command in STATA, as recommen-
ded by Lokshin and Sajaia (2004), which is specifically designed for this type of econometric analysis.
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Full Information Maximum Likelihood (FIML) method for Equations (1.2), (1.4), and

(1.5). These columns collectively offer a deep dive into various facets of the model. Spe-

cifically, column (1) details the estimated coefficients for the selection equation (1.2),

which is crucial in understanding farmers’ decisions regarding whether to adapt or not

to climate change. Meanwhile, columns (3) and (4) display the estimated coefficients for

the yield functions (1.4) and (1.5). Column (3) pertains to farmers who have implemen-

ted adaptation measures, while column (4) relates to those who have not adapted. This

thorough presentation and analysis of the results provide a comprehensive exploration of

how climate change adaptation measures influence agricultural yields.

5.1 Basic correlation : OLS estimates

I estimate equation (1.3) using OLS and present the results in column (2) of Table

1.4. These estimates use standard errors clustered at the district level and include the

binary adaptation variable. Column (2) displays the estimates of the equation with the

adaptation variable and controls for other factors that affect agricultural yield.

The estimated relationship between adopting adaptation strategies and agricultu-

ral yields is positive and statistically significant. Furthermore, the magnitudes of the esti-

mated adaptation effect on agrarian products is statistically significant and economically

meaningful. Standardized beta coefficients have been calculated for the estimates, and

they suggest that adapting to climate change is associated with an increase in agricultural

yields by about 0.39 to 0.41 standard deviations. For instance, interpreting the OLS esti-

mates as causal and using the mean of the estimates, a non-adapted farmer with an initial

average yield of 1,054 kg per hectare who adopts at least one adaptation strategy could

expect an increase to 1,475 kg per hectare, representing a 40% increase in agricultural

yields.

Although the OLS estimates indicate a positive and significant association bet-

ween climate change adaptation and agricultural yields, the causal relationship is not

established by these results. Farmers who are more skilled or have better resources may

choose to adapt, which could lead to an upward bias in the estimates if these factors are not

adequately controlled for in the analysis. Moreover, farmers with initially higher yields

may be more inclined to adopt adaptation strategies and sustain high outputs, potentially

leading to an overestimated impact of adaptation on crops.
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5.2 Assessing instrument validity : The use of falsification test

My preferred FIML estimation relies on instruments that are assumed to be exclu-

ded from the outcome equation. To assess the plausibility of this assumption, I conduct

a falsification test equation (1.10), where I assess the predictive power of the instruments

for the outcomes of non-adapters.

The results for equation (1.10) are meticulously detailed in Table 1.3. This table

includes the F-statistic and its corresponding p-value, which are critical in assessing the

validity of the instruments used in the analysis. The F-statistic for this equation is cal-

culated to be 0.78, and the associated p-value is 0.67. These values are indicative of the

validity of the information sources as instruments for the adaptation variable in the model.

The findings that the information sources are valid instruments align well with previous

research (Di Falco et al., 2011; Di Falco and Veronesi, 2013, 2014). This consistency with

prior research further reinforces the reliability of the methodology and the robustness of

the results obtained in this study.

Table 1.3 –
Parameter estimates – falsification test

Model 1

Non-adapted
farmers yields

Information sources
government 36.25 (62.55)
newspaper 134.02 (332.53)
radio -90.39 (86.77)
television 143.38 (231.76)
local community -144.98 (162.11)
NGO 150.49 (143.56)
worship temple 50.17 (53.55)
social media info 19.94 (31.14)
constant 1,281.71 (2,131.14)
Wald test F-stat. = 0.78 (p-value = 0.67)
Sample size 3,280

Notes : Awé, 2024. Model 1 employs ordinary least squares with
R2 = 0.414, estimated at the plot level. Standard errors, clustered
at the district level, are provided in parentheses. The F-statistic is
used to test the null hypothesis that the information sources are not
correlated with the yield equation’s error term. The symbols ∗ ∗ ∗,
∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, res-
pectively. Coefficients for other variables are not reported.
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5.3 Drivers of adaptation decision

Probit estimates of the adaptation decision equation (1.2), considering access to

information sources as independent variables, are outlined in column (1) of Table 1.4. The

data indicates that access to government agencies and newspapers significantly increases

the likelihood of adaptation by 13% and 9%, respectively. Similarly, access to radio, TV,

and social media notably elevates the probability of climate change adaptation by 6%,

15%, and 38%, respectively. The first-stage F-statistic associated with these information

sources is estimated at 346.2, which is substantially above the threshold of 10, suggesting

these instruments are relevant and unlikely to be weak (following the criteria established

by Stock and Yogo (2002) and discussed further by Andrews et al. (2019). These results

are consistent with the discussion in Section 3.2.

The estimates from the selection equation (1.2) show that the coefficient related

to literacy is positive and statistically significant, suggesting that educated farmers are

more likely to understand and implement adaptation measures. The variables related to

access to extension services and membership in farmers’ organizations are also positive

and statistically significant, which indicates that such organizations and services play a

crucial role in disseminating information, as noted by Abdulai and Huffman (2014) and

Bandiera and Rasul (2006).

The coefficient for access to working capital is significant and positive, highligh-

ting that farmers with fewer capital constraints are more inclined to undertake adaptation.

Conversely, the nonfarm activity variable shows a positive but not statistically significant

effect, suggesting that engagement in nonfarm activities does not significantly influence

farmers’ decisions to adapt due to limited nonfarm opportunities for rural farmers (Bur-

gess et al., 2017). Furthermore, the experience with adverse climate events like droughts,

floods, severe winds, and riverine floods has a positive and significant effect, consistent

with Iyigun et al. (2017), who found that such experiences tend to increase farmers’ resi-

lience. Lastly, the positive and significant coefficient for the farmer age variable indicates

that older farmers may have a greater propensity to adapt due to a wealth of experience in

dealing with climatic challenges. The variable representing gender is positive and signifi-

cant, insinuating that male farmers are more likely to adapt than their female counterparts.
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5.4 Determinants of yields for adapters and non-adapters

Columns (3) and (4) of Table 1.4 display the estimated coefficients of the agri-

cultural yield functions (1.4) for adapted farmers and (1.5) for nonadapted farmers, res-

pectively. The regression results indicate that inputs such as seeds, inorganic fertilizers,

and labor have positive and statistically significant coefficients for both groups of farmers,

suggesting their beneficial impact on yields. For nonadapted farmers, the labor input and

use of organic fertilizers also show a positive and significant relationship with output, un-

derscoring the importance of these inputs. However, using powder and liquid pesticides

does not affect outcomes for either group significantly. While there is a positive corre-

lation between access to working capital and yields, it is not statistically significant. It

is consistent with previous research by Guiteras (2009), reflecting limited financial re-

sources for farmers in developing countries.

As for the influence of climate variables, Table A.2 outlines their seasonal impacts

on yields for both adapted and nonadapted farmers. Adapted farmers experience yield be-

nefits from fall and spring temperatures, rainfall, and fall evaporation. In contrast, summer

and winter temperatures, along with evaporation and wind speed in those seasons, tend to

reduce their yields. For nonadapted farmers, beneficial factors include winter temperature,

fall evaporation, and spring wind speed. I incorporate quadratic terms into the regression

models to examine potential non-linear relationships between climate variables and agri-

cultural yields. Significant coefficients from several quadratic terms indicate non-linear

associations for both adapted and non-adapted farmers. Specifically, positive coefficients

for squared terms of temperature, solar radiation, and evaporation point to a threshold

effect ; yields may be low below these thresholds but tend to increase once surpassed.

Conversely, negative coefficients for quadratic terms of certain climate variables suggest

the presence of an optimal level beyond which yields could decline. These patterns un-

derscore the importance of considering additional climate variables such as evaporation,

solar radiation, and wind speed in determining crops. These findings align with the re-

search conducted by Zhang et al. (2017).
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Table 1.4 –
Adaptation decisions and agricultural yields

FIML OLS FIML
Adaptation Yields Yields Yields

Adapted Nonadapted
(1) (2) (3) (4)

I 417.4∗∗∗ (33.2)
labor .01∗∗∗ (.00) 8.1 (9.2) 7.2 (8.2) 8.1∗∗∗ (2.9)
labor sqr −.00∗∗ (.00) .0 (.0) .0 (.1) -.1 (.1)
inorganic fertilizer .01∗∗∗ (.00) .1 (.1) .5 (.3) .2∗ (.1)
inorganic fertilizer sqr −.00∗∗∗ (.00) -.0 (.0) -.0 (.0) −.1∗ (.0)
organic fertilizer .01∗∗∗ (.00) .8∗∗ (.4) 1.1∗ (.6) .0 (.1)
organic fertilizer sqr −.01∗∗∗ (.00) −.1∗ (.0) -.0 (.00) -.0 (.00)
pesticide powder −.01∗∗∗ (.00) 1.5 (1.3) -2.2 (2.8) 2.4 (1.6)
pesticide powder sqr .00∗∗∗ (.00) -.0 (.0) .0 (.0) -.0 (.0)
pesticide liquid −.01∗∗∗ (.00) −2.6∗ (1.4) -1.5 (2.8) -2.2 (1.6)
pesticide liquid sqr .00∗∗∗ (.00) .1∗ (.00) .0 (.00) .0 (.00)
seed .01∗∗∗ (.00) 3.7∗ (1.8) 9.1∗∗ (4.5) .7∗ (.4)
seed sqr −.00∗ (.00) −.1∗ (.00) −.1∗∗∗ (.00) .0 (.00)
literacy 05∗∗∗ (.01) -25.2 (16.4) −48.3∗ (25.5) -28.7 (18.2)
male .03∗∗∗ (.01) 15.7 (18.4) 28.3 (24.9) 37.9 (31.6)
age .01∗∗∗ (.00) .2 (.4) .7 (.5) -.0 (.4)
household size −.02∗∗∗ (.00) 4.3 (3.1) -11.3 ( 9.2) 1.6 (3.5)
relatives .02∗∗∗ (.00) 1.0 (2.7) 13.7 (10.1) 3.4 (3.5)
access to credit .04∗∗∗ (.01) 9.7 (21.8) 14.1 (30.3) 23.2 (24.1)
nonfarm job .01 (.01) .4∗∗∗ (.00) 321.4 (210.3) 382.7 (293.4)
drought experience .02∗∗∗ (.01) 6.7 (22.8) −55.6∗∗ (23.6) 43.9 (28.5)
flood experience .03∗ (.01) 97.9 (104.1) 158.0 (158.8) 48.7∗ (25.7)
pests experience .00 (.01) -9.0 (20.7) −43.3∗∗ (19.9) -8.5 (21.8)
severe wind exp .03∗∗∗ (.00) 11.3 (26.8) −74.2∗∗ (40.6) 18.2 (23.4)
hail storms experience -.00 (.02) 100.4 (74.7) 89.0 (81.2) -29.7 (74.4)
riverine flood experience .03∗∗ (.01) 149.0∗∗∗ (52.1) 1.2 (55.0) 142.0∗∗∗ (34.4)
landslides experience -.03 (.03) 42.9 (39.6) -96.5 (54.0) 29.2 (46.7)
mean labor .01∗∗∗ (.00) .6∗∗∗ (.1) .1 (.2) .2∗∗∗ (.0)
mean inorganic fertilizer .00 (.00) −.1∗∗∗ (.00) -.0 (.00) -.0 (.00)
mean organic fertilizer .00 (.00) -.0 (.00) .0 (.00) .0 (.00)
mean powder pesticide -.00 (.00) -.0 (.00) .0 (.00) .0 (.00)
mean pesticide liquid -.00 (.00) .0 (.00) .0 (.1) -.0 (.00)
mean seed .00∗ (.00) −.1∗ (.00) -.1 (.1) .1∗∗ (.00)
machinery .06∗∗∗ (.01) 32.1 (27.3) .0 (40.8) 45.5∗ (27.4)
computer .01 (.02) -41.9 (30.2) −70.3∗ (34.7) -9.6 (62.4)
latitude −.03∗∗∗ (.00) −30.2∗∗∗ (24.8) −63.1∗ (6.2) 20.3 (39.3)
altitude −.00∗∗∗ (.00) -.0 (.00) .0 (.1) -.0 (.00)
acces extension .08∗∗∗ (.01) −.2∗ (.1) -167.9 (253.3) 207.8 (273.9)
farmer organization .04∗∗∗ (.01) 52.4∗∗∗ (9.4) 30.9 (26.9) 69.6∗∗ (33.4)
government info .13∗∗∗ (.01)
newspaper info .09∗∗∗ (.03)
radio info .06∗∗∗ (.01)
TV info .15∗∗∗ (.03)
local community info -.02(.03)
ngo info -.09 (.06)
temple info .07 (.06)
social media info .38∗∗∗ (.14)
constant 1324.2∗∗ (457.1) −705899.1∗∗∗ (96948.7) -6725.2 (6894.5) 2601.4 (8580.2)
σt 395.5∗∗∗ (64.7) 268.3∗∗∗ (36.1)
ρt .2∗∗∗ (.02) .01 (.03)
F. stat 346.2
LR test of indep. eqns. : chi2(1) = 28.4∗∗∗ Prob > chi2 = 0.0
Number obs. 5,091 1,811 3,280
Notes : Awé, 2024. Robust standard errors are clustered at the district level and are shown in
parentheses. Column (1) presents the probit estimates of the adaptation decision equation (1.2).
Column (2) presents the OLS estimates from Equation (1.3), with errors clustered at the district
level. Columns (3) and (4) report the estimates of the endogenous switching regression, derived
from Equations (1.4) and (1.5), with errors clustered at the district level for the adapted and non-
adapted households, respectively. The term σj represents the square root of the variance of the
error terms µtj in the outcome Equations (1.4) and (1.5). Meanwhile, ρj indicates the correlation
coefficient between the error term µ from the selection equation (1.4) and the error term υtj from
the respective outcome equations. Symbols ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the
1%, 5%, and 10% levels, respectively.
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5.5 Impact on agricultural yields : An analysis of ATT estimates

Table 1.5 presents the expected production per hectare, comparing actual and

counterfactual scenarios in Columns 1 and 2, respectively. The last column highlights the

impact of adaptation on yields. Across the analyzed countries, adopting adaptation mea-

sures correlates with an average yield increase of 23.3%. Specifically, crops rose from

1,208.57 kilograms (for non-adopters) to 1,489.67 kilograms (for adopters), a significant

difference of 281.10 kilograms at the 1% level, which is economically substantial. The

OLS estimates indicate a potential 40% yield increase or 421 kilograms per hectare. This

estimate is 49.8% greater than the observed increase of 281 kilograms, suggesting the

possibility of an upward bias from endogeneity.

The country-specific analysis yields further insights. In Burkina Faso, adaptation

strategies led to a 21.6% yield increase, from 1,241.24 to 1,509.77 kilograms, which is

significant at the 1% level. In Sao Tome and Principe, the adoption of such measures

resulted in a 27.7% increase, with yields growing from 1,112.42 to 1,420.16 kilograms.

For Sierra Leone, adaptation is associated with a substantial 51.1% yield increase, from

1,058.71 to 1,600.22 kilograms. However, this finding is significant at the 10% level and

warrants further investigation due to relatively high standard errors. In Uganda, farmers

experienced a yield increase of 23.8%, from 1,164.11 to 1,441.39 kilograms, significant

at the 1% level.

These findings underscore that the impact of climate change adaptation on agri-

culture can significantly differ across countries. Such variations may stem from diverse

climatic conditions, crop types, and agricultural practices specific to each nation. Addi-

tionally, the availability of resources, quality of infrastructure, and level of government

support play pivotal roles in the effectiveness of adaptation strategies. Therefore, it is

essential to consider the unique circumstances of each country when assessing the perfor-

mance of climate change adaptation initiatives within their agricultural sectors.
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Table 1.5 –
Impacts on agricultural yields across countries

Country Decision stage Treatment effects

To adapt Not to adapt
(1) (2) (3)

All countries 1,489.67 1,208.57 281.10∗∗∗

(1.82) (12.33) (12.47)
Burkina Faso 1,509.77 1,241.24 268.53∗∗∗

(2.11) ( 3.98) (4.79)
Sao Tome and Principe 1,420.16 1,112.42 307.74∗∗∗

(10.32) (17.60) (20.40)
Siera Leone 1,600.22 1,058.71 541.51∗

(14.09) (317.86) (317.13)
Uganda 1,441.39 1,164.11 277.28∗∗∗

(2.53) (24.20) (24.32)
Notes : Awé, 2024. Columns (1) and (2) display the expected quantity produced per
hectare under actual conditions and counterfactual situations, respectively. Column (3)
presents the treatment effects of adaptation on agricultural outcomes.The symbols ∗∗∗,
∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
Owing to heterogeneity, the increase in yield attributable to adaptation varies among
countries and crops.

5.6 Impact of climate change adaptation on principal crop yields : a country-

specific analysis

Table 1.6 illustrates the effect of climate change adaptation strategies on the yields

of six key crops across various countries. The estimates suggest that countries such as

Burkina Faso, Sao Tome and Principe, Sierra Leone, and Uganda have experienced en-

hanced crop yields following the implementation of these measures. For instance, maize

yields in these nations have increased by an estimated 197 kg/ha (13.6%) in Burkina Faso,

350.8 kg/ha (24.6%) in Sao Tome and Principe, 403.8 kg/ha (30.4%) in Sierra Leone, and

228.6 kg/ha (16.1%) in Uganda. Similarly, estimates for rice show an increase of 136.6

kg/ha (9.2%) in Burkina Faso, 539.2 kg/ha (30.0%) in Sao Tome and Principe, 760.9

kg/ha (44.5%) in Sierra Leone, and 406.8 kg/ha (28.4%) in Uganda after the introduc-

tion of these adaptation strategies. Through strategic implementation, agricultural leaders

and policymakers can bolster the resilience of farming systems, not only promoting hi-

gher crop yields and contributing to enhanced food security in the affected regions, as

highlighted by Adger et al. (2009).
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Table 1.6 –
Impact of Adaptation Strategies on Yields of Various Crops

Crop Decision Country
Burkina Faso Sao T. and P. Sierra Leone Uganda All countries

maize Adapted’s yield 1450.4 (3.7) 1423.3 (27.4) 1328.4 (40.2) 1424.7 (3.0) 1438.4 (2.4)
Adaptation impact 197.0∗∗∗ (7.5) 350.8∗∗∗ (29.8) 403.8∗∗∗ (79.3) 228.6∗∗∗ (29.3) 213.2∗∗∗(13.9)

rice Adapted’s yield 1486.5 (15.9) 1800.3 (701.2) 1708.1 (15.8) 1430.0 (6.1) 1491.8 (6.4)
Adaptation impact 136.6∗∗∗ (33.9) 539.2 (400.1) 760.9 (525.2) 406.8∗∗∗ (72.7) 446.1∗∗∗ (115.8)

sorghum Adapted’s yield 1589.4 (3.6) 1622.3 (72.2) 1439.2 (69.4) 1391.9 (6.0) 1584.7 (3.5)
Adaptation impact 458.9∗∗∗ (9.3) 132.9∗ (10.3) 229.4∗ (124.3) 21.1 (22.9) 447.5∗∗∗ (9.2)

millet Adapted’s yield 3097 (6.8) 3328.3 (73.6) 3276.8 (87.6) 2928.1 (33.4) 3216.3 (6.6)
Adaptation impact 522.4∗∗∗ (15.3) 936.7∗∗∗ (103.3) 654∗∗∗ (124.2) 597.4∗∗∗ (40.6) 530.5∗∗∗ (15.0)

cassava Adapted’s yield 1808.3 (62.1) 1420.1 (33.9) 1468.8 (19.3) 1374.4 (5.6) 1399.1 (6.2)
Adaptation impact 163.3∗∗∗ (57.6) 216.7∗∗ (69.7) 263.0∗∗∗ (29.5) 350.8∗∗∗ (14.4) 321.7∗∗∗ (12.7)

beans Adapted’s yield 1606.9 (47.3) 1449.8 (51.4) 1845.2 (43.2) 1378.3 (37.1) 1427.5 (21.6)
Adaptation impact 405.9∗∗∗ (84.4) 23.1 (24.8) 55.6 (74.9) 240.6∗∗∗ (26.3) 227.6∗∗∗ (25.7)

All crops Adapted’s yield 1509.8 (2.1) 1420.2 (10.3) 1600.2 (14.1) 1441.4 (2.5) 1489.7 (1.8)
Adaptation impact 268.5∗∗∗ (4.8) 307.7∗∗∗ (20.4) 541.5∗ (317.1) 277.3∗∗∗ (24.3) 281.1∗∗∗ (12.5)

Notes : Awé, 2024. This table showcases the distribution of estimates concerning the impact of imple-
menting adaptation measures on the six primary crops cultivated by farmers in four countries. ∗∗∗, ∗∗,
and ∗ indicate coefficients significant at the 1%, 5%, and 10% levels, respectively.

5.7 Analysis of individual adaptation measures on crop yields : a crop-specific

breakdown

The table detailing adaptation strategies (Table 1.1) reveals that the most prevalent

approach farmers adopt is changing planting dates, followed by altering crop types. While

these strategies can be adopted individually, farmers also have the flexibility to combine

them. For instance, combining two systems out of five can lead to ten possible combina-

tions (using the binomial coefficient for combinations), three strategies out of five lead

to ten combinations, and four measures yield five combinations. All five measures toge-

ther present one comprehensive approach. Considering all possible combinations without

repetition, there are a total of sixty-three potential unique strategy combinations.

Table 1.1 indicates that many of these adaptation strategies have been observed

fewer than 100 times. Given more than twenty variables in the regression analysis, esti-

mations based on a limited observation set might introduce bias into the parameter esti-

mates due to the risk of overfitting (Steyerberg et al., 2003). For this reason, this analysis

prioritizes the most commonly adopted strategies : changing planting dates (adopted by

49.2% of respondents), adjusting fertilizer use patterns (4%), and switching crop types

(15.1%). The analysis also explores combining the two predominant strategies : altering

planting dates and crop types. Table 1.7 presents the actual and counterfactual yields per

hectare for each measure.
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Table 1.7 –
Impacts of various adaptation measures on agricultural yields

Decision stage
Adaptation measures Adapted Non-adapted Treatment effects

(1) (2) (3)
Changing planting 1466.6 1195.5 271.0∗∗∗

dates (8.5) (9.9) (5.8)
Changing fertilizer 1381.5 1266.8 114.7
use pattern (19.3) (320.1) (200.8)
Chang crop 1742.1 1304.4 227.7∗∗

typ (18.6) (32.2) (126.8)
Changing planting 1519.9 1076.6 443.3∗∗∗

date and crop (14.2) (96.7) (84.52)
All measures 1,489.7 1,208.6 281.10∗∗∗

(1.8) (12.3) (12.5)
Notes : Awé, 2024. Columns (1) and (2) show the anticipated production per hec-
tare based on actual and hypothetical decisions, respectively. Column (3) presents
the impact of adaptation measures on agricultural yields. ∗∗∗, ∗∗, and ∗ indicate that
the coefficient is significant at the 1%, 5%, and 10% levels, respectively.

Table 1.7 reveals that, on average, farmers adjusting their planting dates saw a

yield increase of 271.0 kilograms per hectare, which is statistically significant at the 1%

level. In contrast, those who modified their fertilizer use patterns experienced a modest

average yield boost of 114.7 kilograms per hectare, which is not statistically significant.

Farmers who opted to switch their crop types registered an average significant yield en-

hancement of 227.7 kilograms per hectare at the 5% level. Significantly, those who altered

both their planting dates and crop types experienced the most pronounced average yield

increment, amounting to 443.3 kilograms per hectare, statistically significant at the 1%

level. These results suggest that implementing various adaptation strategies can positively

influence agricultural yields on average, with modifications in planting dates and crop

types, individually or in combination, offering the most substantial benefits.



55

Table 1.8 –
Impacts of individual adaptation measures on the yields of specific crops

Crop Decision stage Adaptation measures

Changing Plant. dates Changing Fert. use Changing crop typ. Chang. plant. and crop

Obs. 891 48 274 54
maize Adapted’s yield 1487.4 (15.9) 1462.1 (28.7) 1708.9 (109.8) 1403.5 (12.1)

Treatment effects 192.2∗∗∗ (9.9) 100.4 (77.6) 342.8∗∗∗ (41.1) 523.9∗∗∗ (6.9)
Obs. 180 52 36 43

rice Adapted’s yield 1534.7 (72.2) 1465.2 (38.8) 6273.8 (22.1) 1201.3 (84.1)
Treatment effects 467.4∗∗∗ (31.4) 102.1 (98.1) 60.3 (32.6) 280.1∗∗∗ (41.4)
Obs. 480 42 72 61

sorghum Adapted’s yield 1478.2 (7.9) 1312.8 (2.4) 1514.6 (33.3) 1622.4 (61.9)
Treatment effects 338.3∗∗∗ (12.5) 84.1∗∗∗ (10.2) 229.4∗ (90.7) 297.1∗∗∗ (81.3)
Obs. 528 82 258 84

millet Adapted’s yield 2713.3 (36.6) 3228.3 (177.1) 2928.2 (41.7) 2692.1 (18.7)
Treatment effects 734.6∗∗∗ (46.6) 287.6∗∗∗ (60.7) 405.1∗∗∗ (57.2) 81.9∗∗∗ (11.4)
Obs. 60 36 54 39

cassava Adapted’s yield 1376.5 (34.5) 840.1 (12.6) 1692.9 (64.5) 2113.4 (76.3)
Treatment effects 324.4∗∗∗ (74.4) 40.2 (27.3) 470.1∗∗∗ (29.8) 261.3∗∗∗ (51.6)
Obs. 84 32 54 42

beans Adapted’s yield 1317.8 (9.3) 1353.4 (76.5) 1374.8 (51.8) 1775.3 (86.0)
Treatment effects 17.7 (23.4) 60 (40.2) 136.2 (64.3) 33.4∗∗∗ (4.1)
Obs. 891 52 274 61

All crops Adapted’s yield 1466.5 (8.5) 1381.5 (19.3) 1742.1 (18.6) 1519.9 (14.2)
Treatment effects 271.0∗∗∗ (5.8) 114.7∗∗∗ (22.7) 227.7∗∗∗ (126.8) 443.3∗∗∗ (84.5)

Notes : Awé, 2024. Table 1.8 displays the influence of specific adaptation strategies on the yields
of individual crops. For every crop, the table provides the number of observations (Obs.), the
adjusted yield, and the yield’s variation due to the adaptation measures. Coefficients marked with
symbols ∗∗∗, ∗∗, and ∗ are significant at the 1%, 5%, and 10% levels, respectively.

Table 1.8 delineates the impacts of different adaptation measures on the yields

of individual crops. It details the number of observations, outcomes, and the treatment

effects of implementing these adaptation measures for each crop. For maize, yield impro-

vements are statistically significant at the 1% level when altering planting dates, changing

crop types, or employing both strategies simultaneously—with the combination of both

alterations having the most pronounced effect. For rice, yield gains are significant with

adjustments to planting dates and the measure combining planting dates and crop types.

Both sorghum and millet exhibit significant yield increases across all adaptation

measures, with the most substantial improvements for millet resulting from adjustments

to planting dates. For cassava, significant yield boosts are associated with changes in

planting dates, crop types, or a combination of both strategies. Beans show a conside-

rable increase in yield when planting dates and crop types are adjusted concurrently. A

collective examination of all crops indicates pronounced yield improvements across all

adaptation strategies, underscoring that tailored adaptation measures can significantly en-

hance agricultural yields for various crops.
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6 CONCLUSION

This study uses an endogenous switching regression by full information maximum

likelihood to investigate the impact of climate change adaptation on farm households’

agricultural yields. The results indicate a notable increase in yields, with an enhancement

of 281 kg per hectare, or 23.3%. The implementation of adaptation measures, whether

individual or combined, significantly improves agricultural productivity. Notably, strate-

gies employed in tandem appear to be the most effective. Key factors driving the adoption

of these strategies include access to working capital and informational resources. The re-

search also expands the examination of climatic influences on yields, going beyond the

typically analyzed variables of rainfall and temperature. These findings are crucial for in-

forming policy-making focused on effective adaptation methods to counter the negative

impacts of climate change.

Government initiatives that facilitate access to credit, disseminate crucial informa-

tion about climate change, and provide extension services are vital. These services impart

essential knowledge and skills, like crop modification and soil conservation techniques,

all aimed at enhancing agricultural productivity. Throughout this study, I have uncovered

significant insights into the effects of various adaptation strategies on agricultural produc-

tivity. It is important to acknowledge, however, that this analysis, while comprehensive,

may not encompass all adaptation methods employed globally, which are often customi-

zed to specific environmental and economic contexts. The effectiveness of these methods

is deeply influenced by regional characteristics and specificities. Despite the detailed in-

sights provided by the observations for each strategy and the extensive variables in the

regression models, broader interpretations might be necessary to cater to different crops

or regions. This research opens an exciting avenue for future studies. Investigating the ef-

fectiveness of diverse adaptation techniques across various global contexts could deepen

our understanding and improve agricultural practices worldwide.
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ARTICLE 2

ADAPTATION TO CLIMATE CHANGE AND FARMERS’ EXPOSURE TO
ENVIRONMENTAL RISKS : A STUDY IN FOUR AFRICAN COUNTRIES

1 INTRODUCTION

Climate change significantly impacts agricultural productivity and income by al-

tering climatic patterns, as established in seminal works by Deschênes and Greenstone

(2007), Deschênes and Greenstone (2012), and Mendelsohn et al. (1994). In Africa, far-

mers face considerable risks due to climate change, with its economic impact on agri-

culture estimated to be around 10% of GDP. Notably, the majority of armers exhibit

risk-averse behavior, actively seeking strategies to mitigate their vulnerability to clima-

tic uncertainties, as noted in research by Moscardi and De Janvry (1977) and Palis et al.

(2006). Adaptation measures emerge as a potential strategy for African farmers to reduce

exposure to production variability, extending beyond merely increasing yield, a topic I

explored in Chapter One.

Empirical evidence from studies conducted in both developed and non-African

developing countries suggests that such strategies can effectively counter vulnerabilities

linked to climatic hazards (Burke et al., 2015; Dinar et al., 2012; Trinh et al., 2018).

Di Falco and Veronesi (2014) used data from Ethiopian farmers to demonstrate that cli-

mate change adaptation can significantly reduce vulnerability to production fluctuations.

This finding raises an important question : Are the results from Di Falco and Veronesi

(2014)’ study reflective of a broader trend, or do they represent isolated instances?

Since the work of Menezes et al. (1980), the three central moments of agricultural

yields – variance (M2), skewness (M3), and kurtosis (M4) – have been used to measure

production uncertainty. While the mean and variance provide basic insights into the dis-

tribution’s center and spread, skewness and kurtosis offer perspectives on its asymmetry

and the likelihood of extreme outcomes, respectively (Kim and Chavas, 2003). Farmers,

being inherently risk-averse, adopt strategies that influence these moments, especially
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skewness (M3), to mitigate external factors like climate change that impact their output,

as suggested by Di Falco and Veronesi (2014). These strategies might also affect both

the variance (M2) and kurtosis (M4) of their yield distributions, as Binswanger and Ro-

senzweig (1993) point out. In this study, I focus on skewness as the primary measure of

production uncertainty, with variance and kurtosis serving as supplementary measures.

Identifying the causal impact of adaptation on production uncertainty is challen-

ging due to potential endogeneity and selectivity bias. To address these issues, I use en-

dogenous switching regression models and the same dataset as in Chapter One, which

includes 5,091 farmers from four African countries, primarily growing six types of crops.

Of these farmers, 1,811 have adopted adaptation measures (adapters), while 3,280 have

not (non-adapters). Diverging from Di Falco and Veronesi (2014), this study employs all

three central moments of agricultural yield distribution as measures of uncertainty ins-

tead of focusing solely on the third moment. Additionally, it incorporates extra climatic

variables such as evaporation, solar radiation, and wind speed to circumvent biases linked

to relying solely on temperature and precipitation, as Zhang et al. (2017) recommend.

The results reveal a significant and negative impact of climate change adaptation

on the exposure to production uncertainty in agriculture. The magnitude of these effects is

both statistically significant and substantial. Specifically, the adoption of adaptation mea-

sures is found to increase the skewness of yield distribution by 2.8 units, suggesting that

the yields of a farmer who has adapted to climate change are approximately 1.5 times less

susceptible to climatic risks compared to a non-adapting farmer. Similar observations are

noted for the other two central moments of yield distribution. For instance, adapting to cli-

mate change is observed to decrease the variance of yield distribution by 1.2 unitts, which

corresponds to a 69.1% reduction in the impact of climatic risks on agricultural yields.

Furthermore, the implementation of adaptation measures is associated with a decrease in

the kurtosis of yield distribution by 1.5 units, indicating a 35.5% decrease in the climatic

risk to farming yields. Additionally, the study uncovers significant variations in these im-

pacts across different countries. Notably, pronounced impacts of adaptation measures are

observed in Uganda and Burkina Faso, while the findings in Sao Tome and Principe show

minimal significance. In Sierra Leone, the outcomes are somewhat ambiguous.

This research makes a substantial contribution to the existing literature by pro-

viding empirical evidence on the potential effectiveness of climate change adaptation
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measures in reducing farmers’ vulnerability to production variability. It offers a detai-

led analysis of the impact of adaptation on key statistical measures of yield distribution,

namely variance, skewness, and kurtosis. A notable aspect of this work is its exploration

of how the effects of adaptation vary from one nation to another, highlighting the crucial

role of local conditions in determining the success of such initiatives.

The findings carry important policy implications. They stress the need for promo-

ting and financially supporting climate change adaptation strategies to protect farmers’

livelihoods and ensure food security in the face of increasing climate challenges. The

significant benefits observed in Uganda and Burkina Faso suggest that these countries

should continue prioritizing and expanding effective adaptation measures. The modest re-

sults in Sao Tome and Principe call for a reassessment of current adaptation strategies to

better suit the specific challenges of the country. The ambiguous outcomes in Sierra Leone

necessitate further investigation to identify the underlying factors and develop more tai-

lored adaptation strategies. The study emphasizes the importance of developing country-

specific adaptation strategies that take into account the unique climatic, socio-economic,

and institutional contexts.

The structure of the paper is as follows : Section 2 provides the background and

context, focusing on the factors that influence uncertainty in agricultural production and

reviewing relevant literature on farmers’ responses to climate risks. Section 3 outlines the

analytical framework and the econometric models employed in the study. Section 4 des-

cribes the data used for the analysis. Section 5 presents the findings and offers an in-depth

discussion of the empirical results. Finally, Section 6 concludes the chapter, summarizing

the key observations and insights.

2 BACKGROUND AND CONTEXT

Production uncertainty in agricultural economics is multifaceted, rooted in agro-

nomic, climatic, economic, and policy dimensions. For robust risk analysis, one must

consider and examine these intertwined sources of risk. Foremost among these determi-

nants are weather and climate variabilities. Factors such as temperature variations, in-

consistent rainfall, drought conditions, floods, and other meteorological phenomena can

profoundly impact crop yields and livestock well-being (Antle, 2010; Di Falco and Vero-

nesi, 2014). Similarly, the unpredictability associated with outbreaks of pests and diseases
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poses significant threats to crop yields and livestock health (Horowitz and Lichtenberg,

1993; Perrings et al., 2011).

The agricultural sector is also sensitive to policy shifts. Fluctuations in agricultural

policies and regulations can inject layers of uncertainty into production (Babcock, 2015).

Additionally, technological progress, characterized by the inception and adoption of inno-

vations like genetically modified organisms (GMOs) or precision agriculture, carries its

own set of uncertainties (Marra et al., 2003; Moschini, 2008). The financial dimension,

too, plays a cardinal role in shaping agricultural outcomes. Access to financial instruments

and avenues such as credit, insurance, and off-farm income sources can significantly af-

fect a farmer’s resilience and capability to counteract risks (Sherrick et al., 2004). The

intrinsic attributes of a farm, including its size, geographical positioning, infrastructure,

and other inherent characteristics, dictate its susceptibility to external shocks (Harwood,

1999). Lastly, farmers’ managerial prowess and decisions, from input selection to marke-

ting strategies, remain central in navigating the labyrinth of risks (Hardaker et al., 2004).

Farmers in developing countries require advanced inputs and technologies to im-

prove their agricultural practices. This need is particularly acute for producers in Afri-

can countries, who face a myriad of challenges : climate irregularities that severely im-

pede their output (Di Falco and Veronesi, 2014), limited public investment in agriculture,

constrained access to essential information, fertilizers, financial resources, and inadequate

road infrastructure. Moreover, the ongoing challenges of climate change compound these

difficulties. Many nations in Sub-Saharan Africa are expected to experience semi-arid

conditions, reduced rainfall, desertification, and prolonged droughts (Godfrey and Tun-

huma, 2020). Such climatic shifts will likely lead to diminished crop outputs, exacer-

bating the food insecurity issues that farming households already confront. Projections

suggest increased pest and disease activities and decreasing crop yields, threatening local

sustenance and the broader food system infrastructure (Godfrey and Tunhuma, 2020).

The literature indicates that risk-averse farmers tend to be wary of this down-

side yield risk (Dillon and Scandizzo, 1978; Jullien and Salanié, 2000; Lin and Moore,

1974; Moscardi and De Janvry, 1977; Ramaswami, 1992). They are inclined to adopt

measures, including adaptation strategies, to mitigate their vulnerability. Moscardi and

De Janvry (1977) explored the risk attitudes of Mexican farmers, explicitly examining

how risk aversion influenced their demand for fertilizer. The findings suggest that pro-
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nounced risk aversion among farmers leads them to reduce fertilizer application. Howe-

ver, off-farm income, land ownership, and access to support networks can decrease risk

aversion. Di Falco and Veronesi (2014) found that climate change adaptation measures

significantly reduce Ethiopian farmers’ exposure to the downside risk of low yields.

3 ANALYSIS FRAMEWORK AND ECONOMETRIC MODEL

The production function yj(Cj, Aj,Wj, Sj, Hj, Oj), proposed by Mendelsohn

et al. (1994) and utilized in Chapter One, lacks an uncertainty component in its formula-

tion, making it insufficient for modeling uncertainty in the production process. To remedy

this, I have expanded the model by incorporating u, a stochastic variable that embodies

risk, as recommended by previous studies (Chavas, 2004; Di Falco and Veronesi, 2014;

Menezes et al., 1980).

The enhanced production function, denoted as yj(Cj, Aj,Wj, Sj, Hj, Oj, uj), cap-

tures the maximum yield a farmer can achieve given a set of inputs (Cj) and adaptation

measures (Aj), a vector of climate variables Wj , a vector of geographic attributes Gj , a

vector of soil characteristics Sj , a vector denoting farmer and farm household attributes

Hj , and uj a random variable denoting production uncertainty stemming from climatic

variables for farmer, considering the uncertainty reflected by uj , which assumes a unique

value for each observation. Farmers are presumed to have knowledge of this production

uncertainty, which is depicted by a subjective probability distribution of the random va-

riable uj .

3.1 Metrics for assessing production uncertainty

The work of Chavas (2004) demonstrates that exposure to production uncertainty

can be quantified by the i-th order central moment, denoted as ωij as :

ωij = [yj(Cj, Aj,Wj, Sj, Hj, Oj, uj)− E[yj(Cj, Aj,Wj, Sj, Hj, Oj, uj)]
i (2.1)

, and

M i = E(ωij) (2.2)

Here, the values of i are 1, 2, 3, and 4, corresponding to the first four central
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moments of a distribution. Specifically, the first central moment (M1) is always zero be-

cause it represents the expected value of the deviations from the predicted variables ; M2

denotes the variance ; M3 represents the skewness ; and M4 corresponds to the kurtosis.

A value of ω3
j < 0 indicates that farmer j faces the downside risk of reduced

yields, defined as the risk associated with unexpectedly low outputs (Chavas, 2004; Me-

nezes et al., 1980). The metrics ω2
j and ω4

j serve as tools for robustness checks. Eleva-

ted values of ω2
j and ω4

j indicate heightened exposure to production uncertainty Chavas

(2004).

3.2 Econometric models

Farmer j can select a combination of inputs C and adaptation measures A to en-

hance expected yields and reduce the risks to these yields from climate-related factors,

ultimately resulting in optimal output. The process of minimizing Model (2.1) leads to

the reduced form, as shown in Equation (2.3) (Di Falco and Veronesi, 2014).

ωij = $iIj + T
′

jΓi + εji (2.3)

Where i takes the values of 2, 3, and 4, the term ωij represents the i-th order cen-

tral moment of production uncertainty for farmer j, capturing the variance, skewness, and

kurtosis respectively. The vector Tj encompasses factors influencing production uncer-

tainty, including historical climate data, input variables, farm assets, characteristics of the

farm head, attributes of the farm household, and soil properties. Meanwhile, Ij is a binary

variable set to one when the farmer has adopted any adaptation measureAj and set to zero

when no such adoption has occurred.

The Ordinary Least Squares (OLS) estimates of Equation (2.3) might be subject to

bias and inconsistency, primarily due to potential endogeneity and selection bias. These

issues are likely to arise from the decision-making process farmers undergo regarding

whether to adapt to climate change. In order to address these concerns, I utilize the simul-

taneous equations model with endogenous switching introduced in Chapter One, where I

also discussed the validity of the excluded instruments.

Within this framework, the decision to adapt or not is comprehensively modeled

in the selection equation (2.4), specifically designed to capture the factors influencing a

farmer’s choice to adopt climate change adaptation measures. Concurrently, the outcomes
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of interest, which pertain to the impact of these adaptation decisions on the risk associated

with agricultural output, are represented by risk exposure equations (2.5) and (2.6),

I∗j = T
′
jψ + Z

′
jΛ− ξj

= G
′
jπ − ξj

(2.4)

ωijA = T
′

jAΓiA + εjiA (2.5)

and,

ωijN = T
′

jNΓiN + εjiN (2.6)

For i = 2, 3, 4, ωijA = [yjA−E(yjA)]i, and ωijN = [yjN−E(yjN)]i. In this context,

yjA and yjN represent the yields for farmers who have and have not adapted, respectively.

The error terms, namely εjiA and εjiN , are assumed to be independent and identically

distributed. To regress ωijA and ωijN on independent variables, I utilize the estimates of

ŷjA and ˆyjN to predict E(ŷjA) and E(ŷjN), which are then used to calculate ωijA and ωijN

for i = 2, 3, 4.

I apply the correction approach proposed by Lokshin and Sajaia (2004), a metho-

dology I previously utilized in Chapter One, to specifically address the potential selecti-

vity bias that could arise between the error terms of the decision equation (2.4) and the

output equations (2.5) and (2.6) 1.

Building on this methodology, I present the modified risk exposure equation for a

farmer who has adapted to climate change as follows :

ωijA = T
′

jAΓAi + λAσiA + ηjiA (2.7)

where λA =
φ(G

′
jπ)

Φ(G
′
jπ)

, φ(.) is the standard normal probability density function, and

Φ(.) the standard normalcumulative density function. Additionally, λAσiA captures the

impact of the potential selectivity bias on the risk exposure, ensuring that the estimates

are not skewed by unobserved factors that influence both the adaptation decision and risk

exposure. Lastly, ηjiA denotes the idiosyncratic error term specific to the adapted farmer.

The analogous adjusted risk exposure equation for a non-adapted farmer is given

1. For those interested in a more in-depth understanding of this approach, the ’Econometric Models’
section in Chapter One offers comprehensive details about the empirical specifications and the methodology
employed for this correction. This section provides a thorough explanation of the approach, contributing to
a clearer understanding of the econometric strategies underpinning the study.
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by :

ωijN = T
′

jNΓiN + λNσiN + ηjiN (2.8)

The term σNi signifies the variance of εiN . With the conditionE(ηjiN |Ij = 1) = 0,

λN = − φ(G
′
jπ)

1−Φ(G
′
jπ)

. Using the Full Information Maximum Likelihood (FIML) method, as

detailed by Lokshin and Sajaia (2004) and previously introduced in Chapter One, the

parameters for Equations (2.4), (2.7), and (2.8) are estimated concurrently. The FIML

approach maximizes the likelihood function by considering the product of the density

functions across all observations, as well as the correlations between error terms. Under

the assumption that the error terms are normally distributed and possess a joint cova-

riance structure, the estimator is both consistent and efficient. The associated logarithmic

likelihood function is as follows :

ln Li =
∑M

j {Ij[lnΦ(
G

′
jπ+ρiξA

εjiA
σiA√

1−ρ2iξA
)− lnσiA + ln(φ(

εjiA
σiA

))] + (1− Ij)[

ln(1− Φ(
G

′
jπ+ρiξN

εjiN
σiN√

1−ρ2iξN
))− lnσiN + ln(φ(

εjiN
σiN

))]}
(2.9)

Where i = 2, 3, 4 ; ρAξi represents the correlation coefficient between εiA and ξ ; ρξiN is

the correlation coefficient between εiN and ξ.

For an individual characterized by the vector TjA who has chosen to adapt to cli-

mate change, the expected value of the outcome ωijA can be calculated using the following

equation :

E(ωijA|Ij = 1) = T
′

jAΓiA + σiAλA (2.10)

In the counterfactual scenario, where a farmer who has otherwise adapted to cli-

mate change chooses not to adapt, the expected value of ωijA is characterized by a different

equation. This scenario is essential for understanding the potential impacts of not adap-

ting and provides a comparison against the actual adaptation scenario. The expected value

in this counterfactual situation is given by :

E(ωijA|Ij = 0) = T
′

jAΓiN + σiAλN (2.11)
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The reduction in climate risks due to adaptation is represented by ∆j :

∆ji = E(ωijA|Ij = 1)− E(ωijA|Ij = 0)

= [T
′
jAΓiA + σiAλA]− [T

′
jAΓiN + σiAλN ]

= T
′
jA(ΓiA − ΓiN) + (λA − λN)σiA

(2.12)

4 DATA

This investigation extends the data exploration initiated in Chapter One, utilizing a

dataset encompassing 5,091 farmers from four African nations. These farmers are prima-

rily engaged in the cultivation of six crop varieties. Within this cohort, 1,811 individuals

have implemented adaptive practices to cope with changing climate conditions. These in-

dividuals are henceforth referred to as ’adapters.’ Conversely, the remaining 3,280 farmers

have not undertaken such measures.

Table 2.1 presents comprehensive descriptive statistics for the variables incorpo-

rated in the analysis. Notably, adapters—those who have adopted climate-adaptive mea-

sures—exhibit an average of the variance of yield distribution of 0.29, considerably lower

than the average of .76 observed for non-adapters. This significant difference of -0.47

suggests that adopting adaptive measures may contribute to a more stable yield among

farmers. Additionally, the skewness of yield distribution differs markedly between the

two groups : adapters have an average skewness of 0.88, indicative of a distribution with

fewer low-yield outliers, while non-adapters have a negative skewness of -0.54, revea-

ling a tendency towards unexpected low yields as outlined by Chavas (2004). Moreover,

the kurtosis of yield distribution for adapters averages at 2.68, in contrast to the signifi-

cantly higher kurtosis of 6.60 for non-adapters, resulting in a substantial disparity of -3.92,

meaning that non-adapters experience more extreme yield variations, both high and low,

which can indicate higher production risk.
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Table 2.1 –
Descriptive statistics of the factors determining exposure to climate risks

Total sample Adapters Non-adapters
variable name mean SD mean SD mean SD
Adaptation 0.435 1 0
Variance of yield distribution .48 8.9 .29 .61 .76 6.87
Skewness of yield distribution .17 .02 .88 .02 -.54 .02
Kurtosis of yield distribution 4.49 8.54 2.68 9.91 6.60 10.07
sample size 5,091 1,811 3,280
Notes : Awé, 2024. The sample size references the total number of plots. The final dataset in-
cludes data from 5,091 agricultural households. All data presented are sourced from the house-
hold dataset. SD stands for Standard Deviation.

Continuing with the methodological approach established in Chapter One, I utilize

an endogenous switching regression model in conjunction with the full information maxi-

mum likelihood (FIML) method to control for potential endogeneity biases. As in Chapter

One, the analysis clusters standard errors at the district level to account for intra-district

correlation, thus yielding more robust estimates of standard errors.

5 FINDINGS

Table 2.2 displays the estimates derived from endogenous switching regression

models for Equations (2.5) and (2.6), which examine the relationship between the distri-

bution of moments of agricultural yields and the binary adaptation variable. These fin-

dings utilize the same dataset and variables in Chapter One of the thesis. The table fea-

tures six columns—Columns 1 through 6—all reporting the Full Information Maximum

Likelihood (FIML) results. These FIML results are divided to show the effects on skew-

ness (M3), variance (M2), and kurtosis (M4), with separate subsections for adapted and

non-adapted farms.

5.1 Determinants of production uncertainty for adapters and non-adapters

The FIML estimates reveal that climate variables have distinct effects on the risk

exposure (M3) of adapted and non-adapted farmers. 2 Beneficial impacts on yield skew-

ness for adapted farmers (positive coefficients imply less downside risk) are associated

with fall and spring temperatures, fall solar radiation, and evaporation levels. Labor and

2. The outcomes regarding yields’ kurtosis and variance are consistent with the yield skewness
results. Due to their similar nature, further discussion of these results is omitted here. For these results refer
to columns (3) to (6) in Table 2.2



68

fertilizers significantly enhance yield skewness for both adapted and non-adapted farmers,

suggesting that increased labor and fertilizer use can reduce the likelihood of unpredicta-

bly low yields. The correlation between labor and yield skewness also likely point to an

endogeneity concern around labor, as noted by Fafchamps (1993). Pesticide powder has

a positive and significant effect on the yield skewness for non-adapted farmers but is less

impactful for adapted farmers.

Conversely, seed application does not significantly affect either group, exhibiting

that both adapted and non-adapted farmers might benefit from more strategic seed dis-

tribution across their plots. Additionally, the impact of seeds on yield skewness could be

contingent on their interaction with fertilizers. The interplay between seed quality and fer-

tilizer effectiveness is a crucial determinant in the asymmetry of yield distribution, which

affects the potential for above-average agricultural outputs. For both groups, applying

fertilizers and liquid pesticides enhances yield skewness, suggesting that these inputs ef-

fectively manage production risks.

The coefficient for the literacy variable is positive and significant, suggesting that

farmers with better education are more effectively equipped to mitigate their vulnerability

to risks of decreased yields. For non-adapted farmers, the non-farm activity variable is

also positive and statistically significant, implying that income from such activities could

be used to invest in agricultural inputs, thus reducing their vulnerability to lower yield

risks. However, this variable does not have a significant effect on adapted farmers. Mem-

bership in a farmers’ association and access to extension services both have a positive

and significant impact on yield skewness for both adapted and non-adapted farmers. The

variable representing the number of household relatives exerts a positive and significant

effect on adapted farmers. However, it does not significantly influence non-adapted far-

mers, highlighting that adapted farmers, with more supportive household relatives, have a

greater capacity to cope with and manage their exposure to climate risks than non-adapted

farmers.

Delving into farm (or plot-level) attributes, it is clear that they have a significant

influence on yield skewness. In particular, the irrigation variable shows a positive and si-

gnificant impact on the yield skewness for both categories of farmers. This finding aligns

with numerous studies in the existing literature, which highlight irrigation as a critical

determinant of crop growth and, consequently, a factor in reducing yield skewness (Field
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et al., 2012). In contrast, temperature, rainfall, and solar radiation during the winter and

summer harm yield skewness (see Table A.3). For non-adapted farmers, spring tempera-

ture is the only significant climatic factor affecting yield skewness. Moreover, the rela-

tionships between climate variables and yield skewness exhibit non-linearity, indicating

that climate variables affect yield skewness across different seasons.

Table 2.2 –
Adaptation decisions and farmer’s exposure to climate risks

Dependent Variables : Variance, Skewness, and Kurtosis of Yield Distribution

Skewness (M3) Variance (M2) Kurtosis (M4)

Adapters Non-adapters Adapters Non-adapters Adapters Non-adapters

(1) (2) (3) (4) (5) (6)
labor .02∗∗∗ (.00) .01∗∗∗ −.01∗∗∗ (.00) .01∗∗∗ (.00) −.01∗∗∗ (.00) .00 (.00)
labor sqr -.00 (.00) -.00 (.00) .02∗∗∗ (.00) −.01∗∗∗ (.00) .00∗∗∗ (.00) -.00 (.00)
inorganic fertilizer .21∗∗ (.00) .01∗∗ (.00) .00 (.00) .02∗∗∗ (.00) .01∗ (.00) .01∗∗ (.00)
inorganic fertilizer sqr -.00 (.00) −.01∗∗ (.00) -.00 (.00) -.00 (.00) −.00∗∗ (.00) -.00 (.00)
organic fertilizer .04∗ (.00) .01∗ (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
organic fertilizer sqr -.00 (.00) -.00 (.00) -.00 (.00) −.01∗ (.00) -.00 (.00) -.00 (.00)
pesticide powder -.00 (.00) .01∗∗ (.00) .01∗ (.00) .00 (.00) .01 (.01) -.01 (.01)
pesticide powder sqr -.00 (.00) -.00 (.00) −.00∗ (.00) -.00 (.00) -.00 (.00) .00 (.00)
pesticide liquid -.01 (.01) -.00 (.00) -.00 (.00) -.00 (.00) -.01 (.00) -.02 (.01)
pesticide liquid sqr .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 .00 (.00)
seed .01 (.01) -.00 (.00) −.01∗∗ (.00) -.00 (.00) -.01 (.01) -.01 (.01)
seed sqr −.01∗∗ (.00) -.00 (.00) .00 (.00) .00 (.00) -.00 (.00) -.00 (.00)
literacy .26∗∗ (.12) .02∗∗ (.00) -.02 (.05) .13∗∗∗(.05) -.45 (.40) .18 (.18)
male .06 (.09) .37∗∗ (.17) .22∗∗∗ (.07) .02 (.04) .78∗ (.45) .10 (.19)
age .00 (.00) .00 (.00) .00 (.00) -.00 (.00) .01 (.01) -.01 (.01)
household size .21∗∗∗ (.05) .03∗∗∗ (.00) -.01 (.01) .08∗∗∗ (.02) .02 (.11) .28∗∗ (.11)
relatives .22∗∗∗ (.05) .06 (.05) .01 (.01) −.08∗∗∗ (.02) .09 (.10) −.285∗∗∗ (.11)
access to credit .45∗∗∗ (.09) .15 (.21) .12 (.08) -.02 (.04) -.08 (.58) -.14 (.17)
nonfarm job 2.71 (1.90) 4.80∗∗ (1.62) .02 (.05) .00 (.03) -.42 (.47) .20 (.27)
drought experience -.14 (.12) .19 (.15) .07 (.05) -.08 (.05) .34 (.65) −.49∗ (.25)
flood experience -.22 (.15) .61 (.37) .09 (.14) .13 (.09) 1.59∗∗ (.92) .14 (.29)
pests experience .39∗∗ (.15) .24 (.20) -.05 (.06) .08 (.07) .26 (.60) .32 (.27)
severe wind exp -.11 (.10) .27 (.17) .18∗∗ (.08) −.13∗∗ (.06) -.05 (.56) -.26 (.18)
hail storms exp .28 (.45) .06 (.37) .12 (.21) .08 (.16) .19 (.79) .52 (.59)
riverine flood exp -.43 (.28) .44 (.63) .33∗ (.18) -.13 (.11) 2.97∗ (1.76) -.54 (.39)
landslides experience -.07 (.34) -.68 (.50) -.22 (.27) -.13 (.25) -1.29 (1.31) −2.29∗ (1.24)
maize .04 (.10) .51∗∗ (.23) .05 (.08) .18∗∗∗ (.06) 2.04∗∗∗ (.77) .18 (.22)
rice -.16 (.27) .46 (.47) .19 (.15) -.09 (.10) 1.9 (1.24) .03 (.34)
sorghum -.07 (.17) .46∗∗ (.24) .06 (.07) -.04 (.06) 1.17 (.81) -.37 (.27)
millet .20 (.22) .62∗∗ (.26) -.02 (.09) .07 (.08) 2.01∗∗ (.80) -.19 (.24)
finger millet .85∗∗ (.34) .22 (.24) -.09 (.10) .06 (.15) .08 (.68) −.88∗ (.48)
cassava .17 (.13) .68 (.50) .18 (.21) -.20 (.12) .81 (1.08) .18 (.25)
beans -.18 (.11) -.32 (.46) -.19 (.19) -.06 (.05) -.10 (.99) -.05 (.20)
mean labor .01∗∗ (.00) .02∗∗ (.00) .00∗∗ (.00) .00 (.00) .00 (.00) .00 (.00)
mean inorganic fertilizer -.00 (.00) .00 (.00) -.00 (.00) .00∗∗∗ (.00) .00 (.00) .00 (.00)
mean organic fertilizer .09∗∗∗ (.00) .10∗∗ (.01) .00 (.00) .00∗∗ (.00) -.00 (.00) -.00 (.00)
mean pesticide liquid .08∗∗∗ (.02) .01∗∗∗ (.00) -.00 (.00) -.00 (.00) .00 (.00) -.00 (.00)
mean seed .00 (.00) .01∗ (.00) -.00 (.00) .00 (.00) -.00 (.00) .00 (.00)
machinery -.01 (.28) .38∗∗ (.18) .05 (.07) -.05 (.12) -.76 (.99) -.34 (.44)
computer .08 (.09) -.71 (.52) -.171 (.23) .09 (.09) -1.46 (1.15) -.24 (.20)
irrigation .89∗∗ (.36) .50∗∗∗ (.17) -.23 (.21) .23∗∗∗ (.13) -.38 (1.04) .28 (.55)
latitude −.33∗∗ (.15) .13 (.30) .28∗∗∗ (.12) .29∗∗∗ (.07) 1.29 (.96) .09 (.36)
altitude -.00 (.00) .00 (.00) .00 (.00) −.01∗∗∗ (.00) .01∗ (.00) -.00 (.00)
acces extension 6.77∗∗∗ (2.11) 2.65∗∗ (.63) .16∗∗ (.07) .06 (.05) .27 (.60) -.37 (.26)
farmer organization .16∗∗∗ (.03) .14∗ (.04) -.11 (.09) -.07 (.13) -.40 (.94) .18 (.25)
σj 1.28∗∗∗ (.13) 2.32∗∗∗ (.16) −.79∗∗∗ (.04) −.56∗∗∗ (.04) −7.88∗∗∗ (.79) −2.71∗∗∗ (.52)
ρj .12∗∗∗ (.01) .02 (.03) -.09 (.04) -.01 (.04) .68∗∗∗ (.07) .06 (.13)
LR test of indep. eqns. chi2(2) = 23.56∗∗∗ Prob > chi2 = 0.00 chi2(2) = 53.95∗∗∗ Prob > chi2 = 0.00 chi2(2) = 67.26∗∗∗ Prob > chi2 = 0.00

pvalue = 0.00 pvalue = 0.00 pvalue = 0.00
Number obs. 1,811 3,280 1,811 3,280 1,811 3,280
Notes : Awé, 2024. Robust standard errors are clustered at the district level and are presented in paren-
theses. Columns (1), (3), and (5) report the estimates of the endogenous switching regression, derived
from Equation (2.5) for adapters. Meanwhile, Columns (2), (4), and (6) report estimates derived from
equation (2.6) for non-adapters, with errors also clustered at the district level. The term σj signifies the
square root of the variance of the error terms µjj in the outcome equations (2.5) and (2.6). Meanwhile,
ρj represents the correlation coefficient between the error term ηi in the selection equation (2.4) and
the error term εji in the respective outcome equations. The symbols ∗ ∗ ∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.



70

5.2 Effects of adaptation on production uncertainty : ATT estimates

Table 2.3 displays the average treatment effects on the treated (ATT) of climate

change adaptation strategies, specifically examining their impact on the variance, skew-

ness, and kurtosis of agricultural yields, which are key indicators of production uncer-

tainty. This comprehensive analysis includes both aggregated and individual country-level

data from Burkina Faso, Sao Tome and Principe, Sierra Leone, and Uganda. The table is

structured into three columns. Notably, columns (1), (2), and (3) provide detailed insights

into the ATT for the moments M2 (variance), M3 (skewness), and M4 (kurtosis) respecti-

vely, thereby offering a deeper understanding of the diverse impacts on agricultural yield

distribution.

Overall, implementing adaptation strategies significantly increases yield skewness

(M3) by 2.8 units. This shift signifies a notable decrease in downside risk exposure for

adapters, thus lowering the probability of crop failure. Consequently, farmers who adopt

climate change adaptation practices have agricultural yields that are less vulnerable to

climatic risks. This positive change in skewness is consistent with the effects observed

on other central moments of the distribution. In particular, adopting these strategies is

linked to a reduction in the estimated variance of yield distribution (M2) by 1.2 units.

Similarly, adapting to climate change measures generates a 1.5 unit decline in the kurtosis

of yield distribution (M4). These results demonstrate that adaptation to climate change

significantly reduces the likelihood of crop failure.

In Burkina Faso, adopting climate adaptation measures is associated with a signi-

ficant 2.6-unit increase in yield skewness. Similarly, implementing climate change adap-

tation strategies leads to a notable decrease in yield distribution variance by 1.1 units.

Additionally, adapting to climate change corresponds to a 1.5-unit reduction in the kurto-

sis of yield distribution. These findings suggest that the yields of adapters in Burkina Faso

are more resilient to climatic risks, as they exhibit lower variability and are less prone to

extreme deviations.

In Sao Tome and Principe, the adaptation to climate change exhibits a marginal

increase in the skewness of yield distribution of 0.04 units. This figure, however, lacks sta-

tistical significance, which aligns with the results for yield kurtosis, which also shows an

insignificant downward shift. However, a contrasting significant decrease in the variance

of yield distribution by 2.11. The impacts of climate change adaptation on production
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uncertainty in Sao Tome and Principe present a complex picture, indicating that while

certain aspects of production uncertainty are markedly improved, others remain largely

unaffected. These nuanced findings underscore the necessity for a more comprehensive

analysis to understand the full scope of adaptation benefits in this context.

Table 2.3 –
Effects of climate change adaptation on agricultural yield risk exposure

Average Treatment Effects on the Treated (ATT)

Country M2 M3 M4

(1) (2) (3)
Burkina Faso −1.1∗∗∗ (.01)

2.56∗∗∗ (.02)
−1.53∗∗∗ (.05)

Sao Tome and Principe −1.91∗∗∗ (.03)
.04 (.09)

-.10 (.11)
Sierra Leone −1.88∗∗∗ (.21)

2∗∗∗ (.16)
−5.44∗∗∗ (.83)

Uganda −1.14∗∗∗ (.03)
4.42∗∗∗ (.04)

−2.50∗∗∗ (.12)
All countries −1.21∗∗∗ (.02)

2.79∗∗∗ (.15)
−1.50∗∗∗ (.05)

Notes : Awé, 2024. Columns (1), (2), and (3) detail the average treatment effects (ATT) of adaptation
strategies on production uncertainty, quantified by the momentsM2,M3, andM4, corresponding to va-
riance, skewness, and kurtosis of yield distribution, respectively. The symbols ∗∗∗, ∗∗, and ∗ represent
statistical significance at the 1%, 5%, and 10% levels, respectively, providing a clear indication of the
robustness of the findings.

In Sierra Leone, the implementation of climate adaptation strategies has led to

a significant two-unit increase in the skewness of yield distribution. Additionally, these

measures have decreased the variance in yield distribution by 1.9 units. Moreover, the in-

tegration of such strategies has resulted in a substantial 5.4-units reduction in the kurtosis

of yield distribution. Overall, these findings highlight the pivotal role of climate adaptation

strategies in enhancing the resilience of agricultural production against climate variability

in Sierra Leone.

In Uganda, the adoption of climate adaptation strategies is significantly correlated

with a 4.4-unit increase in the skewness of yield distribution, indicating enhanced resi-

lience to climatic disruptions among adapters. Furthermore, these strategies have resulted

in a 1.14-unit reduction in the variance of yield distribution. Additionally, a notable 2.5-

unit decrease in yield kurtosis has been observed. Collectively, these findings underscore

the efficacy of adaptation strategies in fortifying the resilience of agricultural production

against climate-related challenges in Uganda.
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Overall, Table 2.3 provides a comprehensive overview of the substantial decrease

in exposure to crop failure due to climate change adaptation measures across various

countries. These measures have significantly enhanced the stability of yield distribution by

increasing its skewness while simultaneously reducing its variance and kurtosis. Conse-

quently, adapters experience more robust yields against climate risks. The impact of these

measures, however, varies from country to country. Notably, there is pronounced success

in Uganda and Burkina Faso, a more moderate effect in Sao Tome and Principe, and mixed

outcomes in Sierra Leone.

6 CONCLUSION

This study investigates the effects of adopting climate change adaptation measures

on the vulnerability of agricultural yields to climate uncertainties. Utilizing endogenous

switching regression with Full Information Maximum Likelihood estimates, the research

consistently demonstrates that farmers who have adapted to climate change are more ef-

fectively equipped to handle climate risks. This benefit is reflected in a lower probabi-

lity of unfavorable variations in their agricultural yields. This significant observation is

consistent across three key indicators of climate risk : the variance, skewness, and kur-

tosis of yield distribution. Therefore, the study offers crucial empirical evidence on the

efficacy of climate change adaptation strategies in diminishing uncertainties in agricultu-

ral yields, with a specific focus on these three statistical metrics for evaluation.

Furthermore, the research sheds light on the varying responses to adaptation mea-

sures in different countries, underscoring the significance of local context in shaping these

outcomes. The heterogeneous effects observed in Sao Tome and Principe, Uganda and

Burkina Faso, as well as the mixed results in Sierra Leone, highlight the necessity for

climate change adaptation strategies that are specifically tailored to the unique conditions

and challenges of each country.

Despite the methodological rigor of this study, potential criticisms may arise re-

garding the use of endogenous switching regression models and the validity of the instru-

ments used. Such concerns are acknowledged even in light of the theoretical justifications

and falsification tests employed for exclusion restrictions. While these models and instru-

ments are effective in addressing endogeneity and selection bias, their validity hinges on

the correct model specification and the robustness of the instruments.
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Looking ahead, future research should endeavor to develop more comprehensive

indicators that capture the interactions among various climate variables. The current stu-

dy’s approach of examining each climate variable in isolation might not fully reveal their

collective impact on agricultural yields. For instance, the combined effects of drought,

high temperatures, or irregular rainfall patterns may have a different impact on agricultu-

ral yields than when these factors are considered individually. Such an approach would

offer a more holistic understanding of the complex and multifaceted nature of climate

change impacts on agriculture.



74

AVANT-PROPOS (ARTICLE 3) : ENVIRONMENTAL BENEFITS OF

ADAPTATION TO CLIMATE CHANGE : COMBINING REVEALED AND

STATED PREFERENCE APPROACHES

L’article 3, dont le titre est "Environmental benefits of adaptation to climate

change : combining revealed and stated preference approaches", a été rédigé par l’étudiant

en tenant compte des commentaires, suggestions et relectures de son directeur (Christo-

pher Ksoll) et de la professeure Jie He. Il sera soumis dans la revue Journal of Environ-

mental Economics and Management.



ARTICLE 3

ENVIRONMENTAL BENEFITS OF ADAPTATION TO CLIMATE CHANGE :
COMBINING REVEALED AND STATED PREFERENCE APPROACHES

1 INTRODUCTION

This research combines Revealed Preference (RP) and Stated Preference (SP) me-

thodologies to assess the potential economic benefits of enacting seven climate change

adaptation strategies for open-water fishing at Lake Saint-Pierre in Quebec. These strate-

gies include : the revitalization of riparian zones ; adaptation of agricultural practices in

areas vulnerable to flooding ; improvement of municipal wastewater treatment efficiency ;

safeguarding and rejuvenation of endangered species habitats ; a prohibition on future

dredging activities ; the launch of public education and awareness initiatives ; and more

rigorous enforcement of existing laws and regulations.

In this study, I combine RP and SP data within a cohesive econometric model,

leveraging the unique strengths of each data type (Louviere et al., 2000). This approach

provides a thorough assessment of the economic benefits arising from implementing seven

climate adaptation strategies. Specifically, the methodology merges real decision-making

data up to 2015 (henceforth RP data) with choices in hypothetical situations (henceforth

SP data). RP data, sourced from actual decisions in real-world situations, is valued for

its authenticity. However, its dependence on past events may reduce its relevance for new

initiatives Train (2009). In contrast, SP data captures individuals’ expressed willingness

to support new projects, making it a widely used tool for valuing non-market goods and

services or those not yet realized. This feature is particularly useful for flexible policy

analysis and future planning. Nevertheless, it’s important to acknowledge the potential

for hypothetical bias within SP data (List et al., 2006). This bias arises from the possible

differences between what individuals claim they would do in hypothetical scenarios and

their actions in real-life situations. The integration of RP and SP data presents a balanced

methodology, capitalizing on the merits of both data types while mitigating their respec-
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tive drawbacks. This method effectively resolves issues such as observable and unobser-

vable preference heterogeneity, multicollinearity, endogeneity, and the confines of small

choice sets associated with RP techniques while simultaneously countering the hypothe-

tical bias observed in SP methods (List et al., 2006; Taylor et al., 2010). Combining RP

and SP approaches is an effective method to mitigate hypothetical bias, primarily because

it integrates actual behavior data with hypothetical scenarios.

In conducting this research, I utilize two distinct datasets. The primary dataset in-

cludes information on the most recent fishing trips of 212 recreational fishermen, detailing

which of the six fishing sites at Lake Saint-Pierre was visited, along with their responses

to a series of choice experiment questions (stated preference, or SP, data). While compre-

hensive, this dataset lacks information necessary to measure five key site attributes : catch

rate per hour, size of the fish caught, quality of fish habitats, ease of site access, and the

level of fisherman traffic. To address these missing attributes, I incorporated a secondary

dataset comprising 515 records from Lake Saint-Pierre patrol activities, which also contri-

bute to the RP data. This supplemental data allowed for the calculation of average values

for the aforementioned attributes across six fishing sites for the year 2015. However, it is

important to note that merging these two datasets at an individual level is not feasible due

to the anonymity of the fishers in the patrol records.

This research advances the RP/SP method initially devised by Von Haefen and

Phaneuf (2008), introducing a novel aspect : allowing the ratio scales of RP and SP data to

differ across various fishing site attributes. This modification diverges from the constant

ratio scale employed in the prior study by Von Haefen and Phaneuf (2008), improving

the model’s accuracy and accounting for potential learning and fatigue effects among

participants. To the best of my knowledge, my study is the first to merge RP and SP

methodologies for examining the site preferences of open-water anglers and the economic

impact of these preferences within the context of climate change adaptation strategies.

The results of this study suggest significant economic benefits from implementing

the proposed seven adaptation strategies at Lake Saint-Pierre. The estimated annual ad-

vantage for open-water fishing activities is approximately $9.62 million, culminating in

$216.27 million from 2015 to 2064.

Methodological comparisons between RP and SP data, conducted through statisti-

cal tests on similar parameters, indicate notable differences. These discrepancies suggest
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variations in fishers’ decision-making in actual versus hypothetical scenarios. This echoes

the findings of Von Haefen and Phaneuf (2008) while offering a contrast to List et al.

(2006).

Using the same dataset as He et al. (2016), this study further extends their research,

which separately utilized RP methods, such as the travel cost method, and SP methods,

including contingent valuation and choice experiments, to assess the socio-economic be-

nefits of ice fishing at Lake Saint-Pierre for the same adaptation strategies. Their research

projected annual costs of these strategies to range from $348 million to $1.01 billion,

while estimating the benefits for ice fishing between $1.23 billion and $3.27 billion per

year. By integrating my findings with those of He et al. (2016), it becomes evident that the

combined annual benefits for both ice and open-water fishing significantly outweigh the

implementation costs, with estimates roughly ranging from $1.24 billion to $3.28 billion.

The organization of this paper is as follows : Section 2 provides an overview of

the background, detailing the benefits and constraints associated with the RP, SP, and the

combined RP/SP methodologies. Section 3 outlines the data sources utilized in this study.

Section 4 discusses the identification process and the econometric models applied to both

RP and SP . Section 5 is dedicated to presenting the findings of the study. In Section 6,

we delve deeper into the implications of employing a combined RP/SP approach, along

with associated policy recommendations. Finally, Section 7 offers concluding remarks.

2 BACKGROUND

In this section, I delineate the advantages and limitations of both the RP and SP

approaches individually. Additionally, I explore the benefits and challenges associated

with integrating these two methodologies into a combined RP and SP approach.

2.1 RP approach

Revealed Preference method is a method used to analyze individuals’ choices ba-

sed on their observable behaviour. It is a valuable tool in economics, especially in consu-

mer behaviour and welfare economics.
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2.1.1 Advantages

Revealed Preference data derived from the actual choices individuals make in real-

world settings, often hold an edge in reliability and accuracy over hypothetical scenarios.

They capture individuals’ genuine trade-offs when confronted with actual costs (Train,

2009).

Moreover, because RP data capture decisions made in reality, they avoid the hy-

pothetical bias that can occur with stated preference methods, where individuals might

declare a specific behavior in a hypothetical situation but act differently when faced with

the actual decision (Hausman, 2012). For policy impact analysis, RP data are paramount.

They provide insights into individuals’ responses to past policy changes like those being

analyzed (McFadden, 2001). RP data, often sourced from market transactions, encapsu-

late the influence of market forces and their constraints on individual decisions (Bockstael

and McConnell, 2007).

2.1.2 Limitations

While RP methods offer valuable insights, they are not without their limitations.

RP techniques are inherently linked to existing market transactions, which narrows their

applicability to goods and services currently available and traded in the market. Conse-

quently, they are less suitable for evaluating non-market goods or services or those not

yet in existence (Bockstael and McConnell, 2007). Since RP methods depend on obser-

ved behavior under current market and policy conditions, they may struggle to accurately

predict behavior when those circumstances change (Train, 2009).

Data collection presents another hurdle ; gathering data on actual behavior can

take time and effort. RP often relies on data concerning prices and income, which may

only sometimes be readily available or accurate (Hausman, 2012). Furthermore, RP me-

thods assume that individuals’ choices accurately reflect their preferences. However, va-

rious external factors, such as marketing campaigns or social pressures, can influence

these choices and may distort the accurate representation of their preferences (McFadden,

2001).
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2.2 SP approach

Stated Preference (SP) methods are survey-based techniques used to elicit indivi-

duals’ preferences by asking them to articulate their choices in hypothetical situations.

2.2.1 Advantages

Stated Preference (SP) methods present several advantages, making them a versa-

tile tool for diverse applications. A standout benefit is their adaptability : they can estimate

the value of non-market goods and services, including those not yet in existence, rende-

ring them especially pertinent for policy analysis and planning (Bateman et al., 2002). SP

methods adeptly capture non-use values — for instance, the importance individuals place

on conserving a species or a natural region for future generations. Since these values do

not manifest in market transactions, RP approaches cannot capture them (Carson, 2000).

Additionally, SP methods give researchers the autonomy to structure the hypothetical sce-

narios in surveys, isolating the impacts of distinct elements on individuals’ decisions and

leading to a deeper understanding of decision-making dynamics (Louviere et al., 2000).

Lastly, SP procedures are instrumental in simulating the impacts of policies before their

actual implementation, providing invaluable insights for policymakers (Adamowicz et al.,

1994).

2.2.2 Limitations

Although SP methods bring many benefits, they have limitations. A primary

concern is hypothetical bias, as SP methods rely on hypothetical scenarios. There can

be a discrepancy between what individuals say they would do in a simulated setting and

their actual behavior when faced with the situation (Hausman, 2012). Another issue is

strategic bias, where participants may overstate or understate their willingness to pay if

they believe their response could influence policy or the provision of the proposed good

or service (Carson, 2000).

Designing and conducting SP surveys also presents challenges. These include

creating realistic hypothetical scenarios, choosing an elicitation format, and phrasing

questions—all of which can significantly influence responses (Bateman et al., 2002). Fi-

nally, there is the potential for information bias : if participants lack sufficient knowledge
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or understanding of the good or service in question, the validity of their responses may be

compromised. When respondents face unfamiliar hypothetical situations, their feedback

may not accurately reflect their preferences (Louviere et al., 2000).

2.3 Combining RP and SP approaches

Combining RP with SP approaches entails integrating both methodologies within

a single study framework. This synergy is designed to capitalize on the strengths of each

method, providing a more comprehensive understanding of individuals’ preferences and

behaviors.

2.3.1 Advantages

Combining RP and SP methods provides a comprehensive valuation approach,

capturing a wide range of values. RP techniques are robust in assessing goods and services

with a current market presence and available historical data. At the same time, SP methods

are adept at valuing non-market commodities and those not yet available (Louviere et al.,

2000). Combining RP with SP offers a strategic remedy for the biases inherent to each

approach. SP methods may be prone to hypothetical bias. In contrast, RP’s reliance on

historical data may only partially capture changing preferences or behaviors.

This integration allows researchers to leverage the advantages of both, mitigating

their respective limitations (Hensher, 2010). The amalgamation of RP and SP data en-

hances the predictive accuracy of models. This hybrid dataset provides a more nuanced

representation of individuals’ preferences and behaviors (Adamowicz et al., 1994). The

merger of RP and SP data strengthens the reliability of policy simulations. While RP

data provide insights based on historical trends and past policy changes, SP data allow

exploring potential policy impacts at the proposal stage (Train, 2009).

2.3.2 Challenges

While offering a comprehensive perspective on individual behaviors and prefe-

rences, uniting RP and SP methodologies does present specific challenges. A primary

concern is data compatibility. Since RP and SP data originate from different contexts —

actual versus hypothetical — they may reflect divergent preferences, such as observed ver-

sus reported. This discrepancy requires researchers to ensure methodological consistency,
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safeguarding the compatibility of data collected from both sources (Hensher, 2010).

The integration of these methods also adds complexity to modelling. Combining

RP and SP data calls for advanced econometric models that appropriately handle both data

types. These models are complex in construction and estimation and require substantial

statistical expertise (Train, 2009). Designing surveys to gather both RP and SP data poses

unique challenges. Researchers must create SP hypothetical scenarios that are realistic

and comprehensible while simultaneously obtaining accurate behavioral data for the RP

aspect (Louviere et al., 2000). Although merging RP and SP can mitigate biases inherent

to each method, it does not completely eliminate them. Researchers must proceed with

caution when interpreting results, always considering potential biases that may color their

findings (Adamowicz et al., 1994).

3 DATA

This study utilizes two primary data sources to analyze the preferences and

decision-making of open-water fishermen in Quebec : an in-depth survey and monitoring

datasets 1.

3.1 Survey data

At the heart of this research is an in-depth survey conducted with 212 open-water

fishermen in Quebec. The survey aims to explore their preferences and decision-making

regarding visits to six distinct fishing locations around Lake Saint-Pierre. The survey ca-

tegorizes various attributes as follows :

— Individual-specific attribute : travel costs to the six distinct fishing site 2 ;

— Site-specific attributes : These include catch rate per hour, length of the fish caught,

quality of fish habitats, site accessibility, and the density of fishermen on-site 3.

The survey not only gathers information on recent fishing trips to these locations

but also includes responses to a set of choice experiment questions. These questions

1. I extend my gratitude to Professor Jie He for their provision
2. Travel costs encompass all expenditures associated with the fishing trip, such as fuel, bait, and

other miscellaneous expenses.
3. Catch rate per hour represents the average number of fish caught within an hour. Fish length,

measured in millimetres, acts as an indicator of habitat quality. Site accessibility refers to the time needed
to reach a fishing location. Conversely, on-site fisherman density denotes the number of fishermen at a
particular site at any given time.
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present participants with hypothetical scenarios involving two generic fishing sites and

an option to opt out, with attributes reflective of those mentioned above. While the survey

is comprehensive, it falls short in directly measuring the site-specific characteristics. To

bridge this gap, I have supplemented the survey data with monitoring records from Lake

Patrol activities, collected concurrently with the survey. This additional dataset enriches

our understanding of the fishing conditions and angler preferences at these sites.

3.2 Monitoring data from fishing patrols

The monitoring dataset encompasses 515 unique entries, each corresponding to a

distinct visit by a fisherman to one of the six designated fishing sites around Lake Saint-

Pierre. For a detailed visual depiction of these fishing sites, please refer to Figure 3.1.

Figure 3.1 – Note : Fishing sites of Lake Saint-Pierre. Figure sourced from the 2015 survey conducted
by He et al. (2016).

This dataset is instrumental in providing detailed measurements for several critical

site-specific attributes, which include :
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— The average catch rate per hour ;

— The typical length of the fish caught ;

— The overall quality of the fish habitats ;

— The accessibility of each fishing site ;

— The density of fishermen present at each site.

However, due to the anonymized nature of the monitoring data, which does not reveal

the identities of the fishermen, it is not possible to directly integrate this dataset with the

survey data. As such, I utilize the monitoring data to ascertain average values for the five

aforementioned site-specific attributes, thereby enhancing the comprehensiveness of the

study’s findings.

3.3 Descriptive statistics of the factors influencing fishing site choices

Table 3.1 presents descriptive statistics of these two data sources and two types

of data (RP and SP). The RP data includes Information from the monitoring records of

515 anonymous fishers, as well as survey data from 212 fishermen regarding their most

recent visits to the fishing sites of Lake Saint-Pierre (RP data). The monitoring records

capture five site-specific attributes : catch rate per hour, length of fish caught, quality of

fishing habitats, site accessibility, and on-site traffic, while the survey data measures the

travel costs to these fishing sites. The table also displays descriptive statistics derived from

the responses of the 212 fishermen to a series of up to nine choice experiment questions,

soliciting hypothetical choices among two generic fishing sites and an ‘opt-out’ option

(SP data). Additionally, the table includes demographic information such as the urban or

rural residence status and educational levels of the fishermen, thereby offering a more

comprehensive profile of the survey participants.

3.3.1 Recent visit data (RP data)

The monitoring data for 515 anonymous fishers, detailed in column (1) of Table

3.1, yield the following average metrics : a fisherman catches approximately 2.39 fish

per hour, with the average fish length being around 416.66 millimeters. The overall catch

rate among all fishermen averages about 268.5 fish per hour. The average time to reach

a fishing site, a measure known as ’accessibility,’ is roughly 138 minutes. In addition,
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the sites show an average fisherman density of about 2.24 individuals. Meanwhile, survey

data (also RP) from 212 fishermen on their most recent trip, as shown in column (2),

reveals that the average travel cost for a fishing trip is $477.13.

3.3.2 Hypothetical data (SP data)

The Stated Preference (SP) data, as shown in column (3) of Table 3.1, captures

the average values based on hypothetical scenarios presented to the fishermen. In these

scenarios, the average travel cost to a fishing site is observed to be higher, at $525.56.

Furthermore, the average catch rate per hour is also higher, with an average of 2.98 fish.

Fish in these hypothetical scenarios are typically larger, with an average length of 466.92

millimeters. The overall catch quantity per hour shows an increase, averaging at 287.1.

This figure may either reflect a combined average across all hypothetical fishing trips or

an optimistic perception of fishing success within these scenarios. In terms of accessibi-

lity, the average time needed to reach a fishing site is shorter, recorded at 118 minutes.

Additionally, the average number of fishermen at these sites is marginally lower, with an

average density of 2.1 individuals.

3.3.3 Demographic Information

The survey data from 212 fishermen, presented in column (2), indicates that on

average, each fisherman undertakes roughly six fishing excursions annually and typically

has around 10 years of fishing experience. Approximately 38% of them reside in urban

areas, as reflected by the average of the binary variable for urban residency. Furthermore,

the data reveals that about 74% of these fishermen have attained an educational level

at least equivalent to a high school diploma, as shown by the mean value of the binary

variable for educational background.
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Table 3.1 –
Descriptive statistics of the factors influencing fishing site choices

Variable name RP mean SP mean
(1) (2) (3)

Site characteristics

Travel costs per trip 477.13 525.56
(21.67) ( 6.88)

Number of fish caught in one hour 2.39 2.98
(.54) (.26)

Length of fish caught (in millimeter) 416.66 466.92
(.12) (.89)

Habitat quality (total number of fish caught) 268.45 287.06
(.85) (1.52)

Accessibility to fishing sites (minutes) 138 116
(.001) (.003)

Traffic (on-site fishermen density) 2.24 2.08
(.00) (.01)

Demographic information

Total trips 5.74
(1.22)

Years of fishing experience 10.37
(2.49)

Urban .38
(.15)

HS diploma .74
(.27)

Obs. 515 212
Notes : Awé, 2024. Table 3.1 displays mean values for Revealed Preferences
(RP) and Stated Preferences (SP), summarizing the average characteristics of all
fishing sites around Lake Saint-Pierre (LSP). Column (1) lists the averages of
five specific site attributes gathered from the monitoring data of 515 anonymous
fishers. Column (2) shows the average travel costs per trip and demographic
details—such as total trips, years of fishing experience, and binary variables
for urban residency (’Urban’) and high school diploma attainment (’HS diplo-
ma’)—as derived from the survey data of 212 fishers. Column (3) consolidates
the average responses of these 212 fishermen to choice experiment questions.

4 IDENTIFICATION AND ECONOMETRIC SPECIFICATION WITH RP AND SP

DATA

In this section, the analysis utilizes a general discrete choice econometric model

to examine the identification challenges associated with RP data, SP data, and the com-

bined RP/SP dataset. This approach is designed to provide a deeper understanding of the

nuances and potential complexities inherent in each data type and their combined use.

4.1 Identification and econometric specification with RP data only

In my analysis, I follow a notation system similar to that introduced by Berry

(1994), who were trailblazers in tackling the identification issues that are central to my
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study, particularly in the context of Revealed Preference (RP) applications. The core of

my investigation concentrates on scenarios where an individual chooses one of the six

fishing sites of Lake Saint-Pierre (LSP) for their most recent fishing trip. This analysis is

grounded in the application of travel cost models to understand the dynamics influencing

choices of fishing sites. In line with this approach, I define the indirect utility, denoted

as Ukl, to represent the utility that fisher k derives from choosing fishing site l during his

most recent trip. This relationship is articulated in Equation (3.1).

Ukl = ϕRPkl δ̃k + yRPl α̃k + ζl + νεkl (3.1)

The indirect utility function Ukl in this study is composed of several intricate com-

ponents. It includes factors that vary both across individuals and fishing sites, such as tra-

vel costs represented in the RP data (ϕRPkl ). Additionally, there is a vector of factors, deno-

ted as yRPl , which are unique to each fishing site. An alternative-specific constant (ASC),

symbolized by ζl, is incorporated to account for unobserved attributes of fishing site l.

Furthermore, the model includes an unobserved idiosyncratic error term, νεkl, which va-

ries across both fishers and fishing sites and is normalized to facilitate the identification

process. To prevent multicollinearity with the ASC, the term ζ1 is specifically normalized

to zero.

Following this, the study introduces two specific equations, represented in Equa-

tions (3.2) and (3.3), for δ̃k and α̃k, respectively. These equations are crucial as they cap-

ture not only the main and interaction effects within the model but also include random

effects that are independent of the individual characteristics denoted as xk.

δ̃k = δ̄ + xkδ
0 + ψkδ

ψ (3.2)

α̃k = ᾱ + xkα
0 + ωkα

ω (3.3)

The parameters (δ̄, ᾱ) in the model are set to capture the primary or average ef-

fects, where xk acts as a vector encompassing specific attributes of interest. On the other

hand, the interaction effects, which are crucial for illustrating non-linear relationships

between various variables, are represented by the parameter matrices (δ0, α0). These in-

teraction effects play a pivotal role as they enable the impact of one variable on the fishing
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site choice to vary depending on the level of another variable.

Additionally, the model includes normalized random effects, which are inde-

pendent of xk and are represented by (ψk, ωk). These random effects are specifically

tailored to capture the nuances of the decision-making process that are not directly re-

lated to the observed attributes xk. The specific parameters associated with these random

effects are denoted as (δψ, αω).

To fully articulate the indirect utility function Ukl, Equations (3.2) and (3.3) are

integrated into Equation (3.1). This integration allows for Ukl to be defined as a function

of the factors xk, encompassing both the primary effects and the more complex interaction

and random effects, thereby providing a comprehensive and nuanced understanding of the

factors influencing the choices of the fishermen.

Ukl = ϕRPkl δ̄ + ϕRPkl xkδ
0 + yRPl xkα

0 + γl + ϕRPkl ψkδ
ψ + yRPl ωkα

ω + νεkl (3.4)

and

γl = yRPl ᾱ + ζl, l = 1, 2, ..., 6 (3.5)

Fisher k is inclined to opt for fishing site l when his anticipated utility from this

site, denoted as Ukl, surpasses the expected utility he associates with any of the other sites

within the five sites in Lake Saint-Pierre (LSP). This scenario occurs when the utility Ukl

from choosing site l is the highest among all available options. Therefore, the probability

of a fisher deciding to fish at site l can be articulated as follows :

Pr(Zk = l) = Pr (maxUk1, Uk2, . . . , Uk6 = Ukl) (3.6)

In estimating the likelihood function for fisher k choosing site I , it is assumed

that the unobserved error term εkl adheres to a Type I extreme value distribution and is

independently and identically distributed across observations. This assumption is crucial

for the model’s validity. Additionally, the normalized random effects, denoted as (ψk, ωk),

are also presumed to follow a standard normal distribution, maintaining independence and

identical distribution throughout the dataset.

Building on these assumptions, the probability of a fisher opting to fish at site l

is formulated using a conditional logit model. This model, represented in Equation (3.4),
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effectively incorporates the specified distributions and assumptions.

Pr(Zk = l) =
exp(Ukl)∑6
j=1 exp(Ukj)

(3.7)

and the likelihood function for the fisher k from equation (3.8) is

f(k) =
6∏
l=1

[
exp(Ukl)∑6
j=1 exp(Ukj)

]
(3.8)

In this study, the method of maximum likelihood is utilized to estimate the co-

efficients (δ̄, δ0, α0, δψ, αω, γl), which are instrumental in modeling the behavior of the

fishers. However, it is important to note that within the framework of revealed preference

(RP) data, the parameters ᾱ and ζl cannot be estimated distinctly. Instead, what can be

effectively evaluated is the parameter γj , which represents a linear combination of ᾱ and

ζl.

To estimate the parameter ᾱ accurately, a regression of the estimated values of

γl on the observed attributes yRPl is required. This regression, however, may face several

practical challenges, particularly in environmental applications. One such challenge is

ensuring that the rank condition is met, which necessitates that none of the observed

attributes are linear combinations of other characteristics. Additionally, the number of

Alternative-Specific Constants (ASCs)—which should equal the number of sites minus

one—must exceed the dimension of yRPl (Von Haefen and Phaneuf, 2008).

Furthermore, based on prior experiences, it is observed that a significantly larger

number of γl values, in comparison to the dimension of yRPl , is necessary for accurate pa-

rameter estimation. Another challenge arises when correlations exist between the unob-

served site attributes, ζl, and the observed attributes yRPl . In such scenarios, the use of

instrumental variables becomes essential. The discrete choice model structure provides

a basis for developing instruments for observed attributes that are influenced by social

interactions, such as congestion (Bayer et al., 2009). The application of instrumental va-

riables in the second stage of analysis may further necessitate a substantial choice set for

accurately estimating structural parameters, especially when the instruments have limited

identifying power (Taylor et al., 2006).

These complexities highlight the challenges in achieving identification in environ-

mental applications that rely exclusively on RP data, as pointed out by Von Haefen and
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Phaneuf (2008). Theoretically, Stated Preference (SP) data can be used to identify the

parameters ᾱ and ζl, offering a potential solution to these challenges.

4.2 Identifying and specifying econometric models with SP data only

Within the context of Stated Preference (SP) data, the representation of indirect

utility is articulated as shown in Equation (3.9) :

Ukld = ϕSPkld δ̃k + ySPkld α̃k + ν∗εkld (3.9)

Here, k serves as an index representing an individual, l denotes a specific fishing

site, and d identifies a particular choice set. The formulation in Equation (3.9) diverges

from that in Equation (3.1) in three key respects :

1. In the SP framework, the choices of fishers are driven exclusively by hypothetical

attributes (ySPkld ), which contrasts with RP data, where choices are influenced by both

observed (yRPl ) and unobserved (ζl) attributes ;

2. The parameter ySPkld exhibits variability across individuals and fishing sites due to the

inherent random assignment and exogenous variation of the experimental design,

contrasting with yRPl , which does not have this variability. The variation in ySPkld

facilitates the estimation of all primary and interaction effects in γ̃k and α̃k ;

3. The scale parameters ν∗ and ν may possess different values, which can notably

influence the integration of RP and SP data (Swait and Louviere, 1993).

For alternative l to be the selected option, its utility must be higher than the expec-

ted utilities of the other alternatives in the same choice set. This means that the utility of l,

Ukld, should exceed those of Uk1d, Uk2d, and Uk3d. The probabilistic nature of this choice

and the comparison of utilities are encapsulated in Equation (3.10) :

Pr(Ykd = l) = Pr (max{Uk1d, Uk2d, Uk3d} = Ukld) (3.10)

In this analysis, the assumptions made about the error term εkl in the Revealed

Preference (RP) data section also applied to εkld in the Stated Preference (SP) data. Both

error terms are treated as draws from a Type I extreme value distribution and are consi-

dered to be independently and identically distributed across observations. Similarly, the

normalized random effects, represented by (ψk, ωk), are presumed to follow a standard
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normal distribution, with the same independent and identical distribution across the data-

set.

The decision-making process of fishers, which is influenced by a variety of factors

and stochastic elements, is thus characterized by a specific functional form. This form ac-

counts for the complexities and uncertainties inherent in choosing fishing sites, integrating

both the predictable and random aspects of the decision-making process :

Pr(Zkd = l) =
exp(Ukld)∑3
j=1 exp(Ukld)

(3.11)

and

f(k) =
9∏
d=1

3∏
l=1

[
exp(Ukld)∑3
j=1 exp(Uklj)

]
(3.12)

Equation (3.12) provides a detailed outline of the likelihood function for fisher k. This

function accounts for the probabilities of selecting each site l within each choice set d.

This formulation operates under the assumption that the normalized random effects, de-

noted as (ψk, ωk), are independently and identically distributed standard normal variables.

This approach contrasts with the Revealed Preference (RP) data, where both observed

attributes and potentially correlated unobserved attributes are considered. On the other

hand, Stated Preference (SP) data is restricted to only observed characteristics. This key

difference highlights the limitation of SP data in terms of unobserved features. Specifi-

cally, the unobserved attributes, represented by ζl in Equation (3.1), cannot be effectively

identified using SP data alone. As a result, without incorporating RP data into the analy-

sis, the ability to fully comprehend and accurately reconstruct the preferences of fishers

would be significantly compromised. This underscores the importance of integrating both

RP and SP data for a more complete and nuanced understanding of fisher preferences and

behaviors.

4.3 Assessing the parameters of common variables in RP and SP data

Recent empirical research indicates that the hypothetical decisions made by ex-

perienced individuals tend to closely align with their actual choices in the real world.

However, there are noteworthy exceptions, such as a more pronounced inclination to-

wards selecting the ’opt-out’ or ’no trip’ option in hypothetical scenarios (List et al.,

2006; Taylor et al., 2010). This observation suggests that there should be a consistency in



91

the parameters of shared variables between Revealed Preference (RP) and Stated Prefe-

rence (SP) data. Essentially, this implies a harmonious relationship between revealed and

stated preferences among the fishermen. Based on this understanding, the study proposes

two principal hypotheses that stem from the apparent alignment between fishermen’s hy-

pothetical and actual choices in the context of fishing site selection.

1. H1
0 : ϕRPkl δ̄RP = ϕkldSP δ̄SP ⇐⇒ H01 : tkl =

ϕRPkl δ̄RP

ϕkldSP δ̄SP
= 1 (1) ;

2. H2
0 : yRPl xkα

0
RP = ySPkldxkα

0
SP ⇐⇒ H3

0 : tl =
yRPl xkα

0
RP

ySPkldxkα
0
SP

= 1 (2).

In this study, I conduct tests on the hypotheses, labeled as H1
0 and H2

0 , employing

likelihood ratio tests that follow a chi-squared (χ2) distribution. These tests are speci-

fically focused on the attributes of the fishing sites. The critical metrics in this testing

process are the ratios tkl and tl, which represent the RP/SP scale ratios.

If the values of these ratios, tkl or tl, exhibit significant deviations from one, it

implies a disparity between the factors influencing individuals’ real-world decisions (as

captured in Revealed Preference, or RP data) and those affecting their stated preferences

in hypothetical scenarios (as captured in Stated Preference, or SP data). This potential

divergence in influencing factors is crucial as it can provide insights into how real-world

choices might differ from those made in hypothetical situations, a concept explored in

depth by Von Haefen and Phaneuf (2008). Therefore, the analysis of these ratios is pi-

votal in understanding the consistency—or lack thereof—between Revealed and Stated

Preferences in the context of fishing site selection.

4.4 Synthesis model : Combining RP and SP data

In this subsection, the focus is on leveraging the synergistic potential of Revea-

led Preference (RP) and Stated Preference (SP) data. By merging RP and SP datasets,

precise estimation of all parameters in Equations (3.1) and (3.6) becomes feasible. For

example, the parameter ᾱ is ascertainable through SP data, while the parameter γj can be

determined using RP data. Once these parameters are estimated, ζl, a key variable in the

model, can be derived by calculating ζl = γj − yRPl ᾱ. This integrative approach ensures a

thorough estimation of all model parameters, thereby enriching our understanding of the

factors influencing fishers’ site selection choices.

It is important to emphasize that the effectiveness of the experimental design used

in the Stated Preference (SP) choice experiments, and the subsequent identification in
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combined Revealed Preference RP/SP data, hinges crucially on the assumption of a sha-

red data-generating process underlying both RP and SP choices (Von Haefen and Pha-

neuf, 2008). The inherent cross-equation restrictions stemming from this common data-

generating process can be modified in certain ways. For instance, we can introduce varia-

tions in the RP and SP scale for the idiosyncratic error term, and manage the frequency of

choosing the ‘opt-out’ option in SP choice experiments by adjusting RP/SP scale ratios.

To align the SP parameters within the combined model, I utilize RP/SP scale ra-

tios. These per-attribute scale ratios, tkl and tl, are essential for recalibrating the SP para-

meters to be consistent with the RP data. The calculated values of these scale ratios are

detailed in Table 3.2. The convergence of RP and SP data is effectively achieved through

the implementation of a specific likelihood function, which embodies this integration and

enables a comprehensive analysis of fisher preferences and behaviors.

l(k) =
9∏
d=1

3∏
l=1

[
exp(tklϕ

SP
kld δ̃k + tly

SP
kld α̃k + ζl)∑3

q=1 exp(tkqϕSPkqdδ̃k + tqySPkqdα̃k + ζq)

]
(3.13)

In the specified likelihood function, l(k) symbolizes the likelihood of a data obser-

vation contingent upon the parameters. This function incorporates the term tklϕ
SP
kld , which

signifies the rescaled SP parameter for the l-th attribute. Concurrently, tlySPkld represents

the rescaled SP parameter for other observed attributes in the model. The vectors of para-

meters, δ̃k and α̃k, as elucidated in Equations (3.2) and (3.3), are integral to the function.

Additionally, ζl functions as a dummy variable, representing the fishing site l within the

model.

In their research, Von Haefen and Phaneuf (2008) advocate for a constant RP/SP

scale ratio. However, they also highlight that accommodating variations in the scale ratio

across different SP choice scenarios can significantly enhance the model’s accuracy and

fit, particularly within a framework that combines Revealed Preference (RP) and SP data.

This insight underscores the potential benefits of allowing for such variability in the scale

ratio, thereby enabling a more nuanced and accurate representation of preferences and

decision-making processes in the combined RP/SP model.

4.5 Estimating the marginal willingness to pay for attribute improvements

Upon completing the estimation of the combined RP/SP model, a significant fin-

ding is the calculation of the Marginal Willingness to Pay (MWTP) for a single unit im-
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provement in an attribute, which is represented by yRP/SPkl . MWTP is an essential metric

in economic analysis, indicating the additional amount an individual is prepared to pay

for a marginal improvement in a specific attribute. This metric is especially valuable as it

provides insight into how individuals value incremental changes in various attributes.

MWTP is determined by the ratio of the marginal utility of the attribute to the

marginal utility of cost. This calculation is important as it reveals the trade-off an indivi-

dual is willing to make between an improvement in the attribute and the associated cost.

It essentially captures the economic value that individuals assign to small enhancements

in attributes. The equation to compute MWTP for the attribute yRP/SPkl is as follows :

MWTPy
RP/SP
kl =

∂U
RP/SP
kl /∂y

RP/SP
kl

∂U
RP/SP
kl /∂C

RP/SP
kl

= − tykl (α+xkα
0)

tϕklδ

(3.14)

This equation allows for a quantitative understanding of the value that individuals place

on a unit improvement of a given attribute, providing crucial insights for economic ana-

lysis and decision-making. In Equation (3.14), MWTPy
RP/SP
kl symbolizes the marginal

willingness to pay for a unitary improvement in the attribute yRP/SPkl . In this context,

U
RP/SP
kl is the conditional indirect utility function denoting the individual’s derived uti-

lity from the attribute ; yRP/SPkl represents the value of the l-th attribute. The term C
RP/SP
kl

corresponds to the cost linked with the attribute. The symbols tkl and tl indicate scale

ratios obtained from the integrated RP/SP model. Meanwhile, α and α0 are parameters

linked to fisher l. The variable xk represents a vector of demographics, and δ is a parame-

ter associated with the cost.

The negative sign in the equation for MWTPy
RP/SP
kl (Equation (3.14)) indicates

that an increase in cost leads to a decrease in willingness to pay, which aligns with the

law of demand. Practically, MWTP is used to quantify the economic value of various

goods, services, or attributes, including those that are non-market in nature, such as envi-

ronmental quality, health improvements, and other intangible benefits. These valuations

are crucial for policymakers and businesses as they aid in making informed decisions

regarding resource allocation, pricing strategies, and policy interventions.

To transform the conditional choice likelihoods into the unconditional probabi-

lities required for the estimation process, I employ the simulation methods outlined by

Train (2009). The parameters in Equations (3.4) and (3.9) are then estimated using the
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maximum likelihood method. I estimate the Revealed Preferences (RP) and Stated Pre-

ferences (SP) models separately before examining whether at least one RP/SP scale ratio

equals one. Lastly, I estimate the combined RP/SP model. The results are summarized in

Table 3.3 for side-by-side comparison.

5 RESULTS

This section of the study presents a comprehensive analysis of the findings de-

rived from both Revealed Preferences (RP) and Stated Preferences (SP) data, including

their integration. Detailed examination of various attributes, interaction effects, and their

implications for fishing site selection are discussed. The results provide valuable insights

into the factors influencing fishermen’s choices and the potential economic impacts of

these choices.

5.1 Discussion of the main results from the RP estimation only

In this subsection, I delve into the standalone estimation using RP data only, em-

ploying the maximum likelihood method specifically for Equation (3.4). The results from

this estimation are presented in column (1) of Table 3.3. Analyzing the RP data offers

crucial insights into the determinants influencing the selection of a fishing site. The travel

costs estimate is -0.01, statistically significant at the 1% level, indicating that travel costs

negatively affect the fishing site choice. Likewise, the forecast for the Number of Fish

Catches (NFC) is 5.12, statistically significant at the 1% level, highlighting the vital role

that the number of fish catches plays in influencing choices.

Various interaction terms are also statistically significant. For instance, the coeffi-

cient for the interaction between NFC and general fishing experience is 0.70, significant

at the 1% level. The interaction term for NFC and Urban Residence is valued at 0.91,

significant at the 5% level. The interaction between NFC and possession of a High School

Diploma is quantified as -1.7, marked at the 1% level. Furthermore, the interaction coef-

ficient between NFC and Random Effect is -0.17, significant at the 1% level. The model

includes a heterogeneity test, which yields a chi-square statistic of 838.78, significant at

the 1% level with a p-value of 0.00, leading to the rejection of the null hypothesis of no

interaction and confirming significant interaction effects within the model. However, se-

veral parameters, such as Accessibility to Fishing Sites (AFS) and its various interactions
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with General Fishing Experience, Urban Residence, High School Diploma, and Random

Effect, are not included in the model due to multicollinearity issues.

5.2 Analysis of key outcomes from the SP estimation only

In this subsection, I focus exclusively on estimating the model using SP data only,

employing the maximum likelihood method for Equation (3.9). The results are in co-

lumn (2) of Table 3.3. Analyzing the Stated Preferences (SP) data reveals several crucial

insights into behaviors or choices associated with fishing activities. Travel costs are iden-

tified as a critical determinant, with an estimate of -0.01, statistically significant at the

1% level, suggesting that travel costs have a pronounced negative influence on fishing site

choices. The number of fish catches also emerges as a significant factor, with an estimated

0.35, significant at the 1% level.

Various interaction terms within the model further underscore their significance.

The interaction between the number of fish catches and general fishing experience is an

estimated -0.014, significant at the 1% level. The interaction between the number of fish

caught per hour and having a high school diploma is essential at the 1% level, with an

estimated -0.32. The interaction term between the number of fish caught per hour and a

random effect is not statistically significant, with an estimate of -0.001, contrasting with

the findings from the RP data.

The robustness of the model is supported by the chi-square statistics related to in-

teraction and random effects. The chi-square statistic for interaction effects is 43.71 with

a p-value of 0.00, allowing for rejecting the null hypothesis of no interaction at the 1%

significance level. Conversely, the chi-square statistic for random effects is 17.62 with

a p-value of 0.06, significant at the 10% level, which leads to the rejection of the null

hypothesis of no random effects. The SP data highlight the importance of travel costs,

the number of fish caught, and various interaction terms in influencing the behaviors or

choices under study. Unlike the RP data, the SP data do not reveal the impact of unob-

served attributes specific to the fishing sites, and the random effect associated with the

number of fish catches is insignificant.

5.3 Testing of parameters of common variables in RP and SP data

The RP/SP scale ratios derived from this process are shown in Table 3.2.
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Table 3.2 –
RP/SP scale ratio per attribute

Attribute ratio scale Estimate χ2

(2) (3)
Travel costs tkl .478 9.98∗∗∗

(.003) (0.002)
Number of fish caught in one hour t1l .103 44.75∗∗∗

(.0005) (0.000)
Length of fish caught t2l .311 835.07∗∗∗

(.00002) (0.000)
Habitat quality for fish t3l .287 83.99∗∗∗

(.004) (0.000)
Traffic t4l .521 606.71∗∗∗

(5.37e-06) (0.000)
Notes : Awé, 2024 for reference. The symbols ∗∗∗, ∗∗, and ∗ indicate that a coefficient is statistically
significant at the 1%, 5%, and 10% levels, respectively. Column (2) displays each attribute’s RP to SP
estimate ratios. The standard errors for these estimates appear in parentheses below the ratios. Column
(3) lists the χ2 values, which test the equality of the RP and SP parameters for each attribute. The p-
values for these tests are provided in parentheses beneath the χ2 values. The null hypothesis, H0, posits
that these ratios equal one.

Table 3.2 displays significant differences between the Revealed Preferences (RP)

and Stated Preferences (SP) estimates for the attributes of the fishing sites. All estimated

RP/SP scale ratios are less than one, with the associated p-values from the chi-square

test estimates consistently below 0.05. This evidence strongly indicates that the RP/SP

scale ratios significantly deviate from one, suggesting a notable disparity between the

factors that influence individuals’ actual decisions (RP) and those that guide their stated

preferences in hypothetical scenarios (SP).

The presence of scale ratios less than one may imply that individuals are more

precise or consistent in their actual choices than in their hypothetical ones, possibly due to

hypothetical biases or the differing contexts within which real and hypothetical decisions

are made (Von Haefen and Phaneuf, 2008). Acknowledging these observed discrepancies

is crucial as they highlight the unique dynamics underlying RP and SP data. Subsequently,

I utilize these estimated RP/SP scale ratios through the maximum likelihood method to

assess Equation (3.13).

5.4 Analysis of principal findings from the combined RP/SP estimation

In this subsection, I use the maximum likelihood method to estimate the combined

RP/SP data for Equation (3.13). The results are in column (3) of Table 3.3. Analyzing the

combined RP and SP data provides critical insights into the factors influencing fishing site

selection. A consistent finding across the RP, SP, and combined RP/SP estimation is the
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significant negative impact of travel costs on site selection. The parameter’s estimate is

−.01∗∗∗, indicating statistical significance at the 1% level for all three datasets. However,

the combined RP/SP data highlights differences from the separate RP and SP datasets.

For example, the influence of the Number of Fish Catches (NFC) and specific interaction

terms differ. In the combined data, the NFC estimate is 0.39, which is not statistically

significant, contrasting with its essential role in the individual RP and SP datasets.

Additionally, interaction terms, such as NFC and General Fishing Experience or

NFC and High School Diploma, lack statistical significance in the combined data despite

their importance in the individual RP or SP models. The chi-square statistics for testing

interaction and random effects merit attention. In the combined RP/SP dataset, the chi-

square statistic for interaction effects is χ2 = 31.52 with a p-value of 0.00, which is

significant at the 1% level. The chi-square statistic for random effects is χ2 = 34.13∗∗∗

with a p-value of 0.00, indicating significance at the 1% level. These figures align with the

results from the individual RP and SP datasets, reinforcing the importance of interaction

and random effects.
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Table 3.3 –
Determinants of fishing site selection

RP data SP data RP/SP data

(1) (2) (3)

Log-likelihood -3519.06 -1959.93 -1961.1441

Travel costs −.01∗∗∗ (.00) −.01∗∗∗ (.00) −.01∗∗∗ (.00)
Number of fish catches (NFC) 5.12∗∗∗ (.70) .35∗∗∗ (.11) .39 (.33)
NFC * Gen fish exp. .70∗∗∗ (.04) −.014∗∗∗ (.01) -.024 (.02)
NFC * Urban .91∗∗ (.36) −.15∗ (.08) -.25 (.26)
NFC * HS diploma −1.7∗∗∗ (.64) −.32∗∗∗ (.09) -.28 (.27)
NFC * Random effect −.17∗∗∗ (.04) -.001 (.04) -.002 (.122)
Length of fish caught (LFC) .54∗∗∗ (.03) .00∗∗∗ (.00) .01∗∗∗ (.03)
LFC * Gen fish exp. −.03∗∗∗ (.00) −.00∗∗∗ (.00) −.00∗∗ (.00)
LFC * Urban −.62∗∗∗ (.03) -.00 (.0) -.00 (.0)
LFC * HS diploma .12∗∗∗ (.02) .00 (.00) −.00∗ (.00)
LFC * Random effect .00 (.00) -.00 (.00) -.00 (.00)
Quality of fish habitat (QFH) .02∗∗∗ (.00) .00∗∗∗ (.00) .00∗∗∗ (.00)
QFH * Gen fish exp. −.01∗∗∗ (.00) -.00 (.00) 9.53e-07 (.00)
QFH * Urban .00 (.00) -.00 (.00) -.00 (.00)
QFH * HS diploma .02∗∗∗ (.00) .00 (.00) .00 (.00)
QFH * Random effect .00 (.00) -.00 (.00) -.00 (.00)
Accessibility to fishing sites (AFS) - -.04 ( .19) -.58 (.44)
AFS * Gen fish exp. - .000 (.00) .02 (.02)
AFS * Urban - -.23 (.15) -.26 (.34)
AFS * HS diploma - -.06 (.16) .22 (.38)
AFS * Random effect - −.06∗∗∗ (.01) −.10∗∗∗ (.03)
Fishers number (FN) −194.02∗∗∗ (10.24) −.53∗∗∗ (.14) −1.22∗∗∗ (.31)
FN * Gen fish exp. 4.44∗∗∗ (.27) .01 (.01) .04∗∗ (.02)
FN * Urban 114.81∗∗∗ ( 5.14) .14 (.11) .17 (.22)
FN * HS diploma −23.74∗∗∗ (2.78) .17 (.12) .56∗∗ (.27)
FN * Random effect .07∗∗∗ (.00) .01∗∗∗ (.00) .11∗∗∗ (.01)
SP outside dummy (ASC) 21.79 (580.77) 40.49 (900.96)
ASC * Gen fish exp. .20∗∗∗ (.06) .03∗∗∗ (.01)
ASC * Urban 2.47∗∗ (.97) .44∗∗ (.20)
ASC * HS diploma 2.21∗∗ (1.12) .17 (.19)
ASC * Random effec -.31 (.46) .12 (.09)
Sectors of the Lake Saint-Pierre
Sector 2 −8.16∗∗∗ (.56) -.11 (.07)
Sector 3 .10 (.11) .16∗∗∗ (.05)
Channel 1 .28 (.22) -.06 (.17)
Channel 2 −6.07∗∗∗ (1.11) .11 (.18)
Channel 3 -.12 (.40) .76∗∗∗ (.14)
Constant 209.67∗∗∗ (13.63) −1.5∗∗∗ (.20)
Heterogeneity test
H0 : Interact. = 0 χ2 = 838.78∗∗∗ χ2 = 43.71∗∗∗ χ2 = 31.52∗∗

p.value = 0.000 p.value = 0.000 p.value = 0.048
H0 : Random eff. = 0 χ2 = 25.60∗∗∗ χ2 = 17.62∗ χ2 = 34.13∗∗∗

p.value = 0.000 p.value = 0.06 p.value = 0.000
H0 : ASCs = 0 χ2 = 295.29∗∗∗ χ2 = 63.01∗∗∗

p.value = 0.000 p.value = 0.000
Notes : Awé, 2024. The estimates for Equation (3.1), using only RP data, are shown in
column (1). Column (2) displays the estimates for Equation (3.9) based on SP data alone.
Column (3) presents the estimates of Equation (3.13) derived from the combined RP/SP
data set. The table encompasses estimations for various parameters including ’Travel Costs,’
’Number of Fish Catches (NFC),’ ’Length of Fish Caught (LFC),’ ’Quality of Fish Habitat
(QFH),’ ’Accessibility to Fishing Sites (AFS),’ and ’Fishers’ Number (FN).’ Some parame-
ters are presented in interaction with variables such as ’General Fishing Experience,’ ’Ur-
ban Residence,’ and ’High School Diploma.’ At the table’s lower section, a heterogeneity
test assesses the significance of interaction effects, random effects, and alternative specific
constants (ASCs). The chi-square statistic and p-value of this test are also included, with
a low p-value suggesting rejection of the null hypothesis, thereby indicating significant he-
terogeneity. The table further details parameters for different sectors and channels of Lake
Saint-Pierre, with symbols ∗ ∗ ∗, ∗∗, and ∗ indicating statistical significance at the 1%, 5%,
and 10% levels, respectively.
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5.5 Marginal willingness to pay for attribute improvement

Table 3.4 presents the Marginal Willingness to Pay (MWTP) for various attributes

related to fishing activities. The MWTP indicates the monetary value individuals assign to

a one-unit increase in a particular characteristic. Additionally, the table shows the relative

importance of each attribute, quantifying the proportion that each MWTP contributes to

the total MWTP for all features considered.

Table 3.4 –
Marginal willingness to pay (MWTP)

Attributes Marginal WTP ($) Relative importance (%)
Number of fish caught in one hour 45.18 13.94

(2.56)
Length of fish caught 7.76 2.39

(.02)
Habitat quality for fish 4.8 1.48

(.001)
Accessibility to fishing sites 227.43 70.16

(2.29)
Traffic 38.99 12.03

(2.83)
Total 324.16
Notes : Awé, 2024. Standard errors are given in parentheses.

The MWTP for site accessibility stands at $227.43, with this attribute holding the

highest relative importance at 70.16%, indicating that individuals greatly value their ease

of access to fishing sites and are prepared to pay a considerable amount for reduced travel

time. Such a preference might arise because easy access significantly enhances the conve-

nience and overall enjoyment of fishing. In contrast, the MWTP for the number of fish

caught per hour is $45.18, with a relative importance of 13.94%. Individuals value the

opportunity to catch more fish within a set period, likely because it increases the satisfac-

tion and perceived efficiency of their fishing excursions. Traffic, referring to the number

of fishers per trip at a fishing site, has an MWTP of $38.99, with a relative importance of

12.03%.

The MWTP for the length of fish caught is slightly lower at $7.76 and holds a

relative significance of 2.39%, indicating that while individuals appreciate catching larger

fish, they do not value this attribute as highly as others. The preference for larger catches

could stem from the desire for more significant hauls or the perceived prestige of landing

larger fish. The quality of fish habitat has an MWTP of $4.80 and relative importance

of 1.48%, the least among the attributes discussed. Although individuals do value the
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habitat’s quality, which likely affects the health and abundance of fish, they give higher

priority to other features. The total MWTP, representing the aggregate monetary value

individuals are prepared to pay for enhancements across all the attributes mentioned, is

$324.16. In 2009, Dulude (2017) estimated the number of open-water fishers at Lake

Saint-Pierre (LSP) to be 29,673. By applying the MWTP per fisher to the total number

of fishers, these climate change adaptation measures could yield an annual benefit of

approximately $9.62 million for open water fishing.

6 EVALUATION OF THE COMBINED RP/SP METHOD AND POLITICAL IM-

PLICATIONS

The climate change adaptation strategies slated for implementation at Lake Saint-

Pierre encompass various interventions. These include the restoration of riparian zones,

shifts in agricultural practices in flood-prone areas, and enhancing municipal wastewater

treatment efficiency. Collectively, these measures aim to mitigate the negative impacts of

human activities on the Lake’s ecosystem, bolster its resilience to the effects of climate

change, and promote sustainable utilization of its resources.

In their study, He et al. (2016) utilize several non-market valuation methods to as-

sess the socioeconomic benefits of ice fishing and ecosystem services at Lake Saint-Pierre

(LSP) due to the same adaptation measures. Their findings suggest that the annual costs

for these adaptive measures may range from $348 million to $1,010 million, contingent

on the scenario chosen. However, the projected yearly benefits derived from the enhanced

ecosystem services of the Lake, attributable to these efforts, are estimated to outweigh

the costs, ranging from $1,227 million to $3,271 million. The present study indicates that

the economic benefits of open-water fishing alone are approximately $9.62 million an-

nually. Integrating these results with those of He et al. (2016), it can be inferred that the

annual economic returns from the adoption of the seven adaptation strategies at LSP could

range from $1,236.62 million to $3,280.62 million, translating to a net benefit of between

$888.62 million and $2,270.62 million. This underscores that the economic advantages of

the proposed interventions substantially outweigh their associated costs.

These findings have numerous policy implications. Investments in climate adapta-

tion measures at Lake Saint-Pierre (LSP) are economically sound. They may yield policy

benefits for public officials. Such investments also encourage the private sector to adopt
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sustainable practices that preserve and enhance the ecosystem. To further promote sustai-

nability, policymakers could design initiatives that incentivize eco-friendly practices, such

as offering tax incentives or subsidies to compliant businesses. The significant economic

contributions of LSP to fisheries and ecosystem services underscore the importance of

the Lake to many livelihoods. Policymakers can present compelling arguments for pre-

serving these livelihoods through the sustainable management of LSP, a task of particular

relevance to local representatives.

Moreover, policymakers should consider endorsing these adaptation measures, en-

hancing their credentials in environmental stewardship and garnering support from consti-

tuents who prioritize ecological conservation and climate change mitigation. Such endor-

sement could be strategically advantageous. By aligning with climate adaptation initia-

tives, politicians demonstrate leadership in the global effort to combat climate change.

Environmentally-focused industries have the potential to be engines of economic growth

and job creation. Employment opportunities could arise directly within these sectors, such

as roles in renewable energy or sustainable agriculture, and indirectly through supporting

services. This includes positions in local enterprises catering to eco-tourism or the service

sector supporting the renewable energy industry. Thus, climate change adaptation mea-

sures could improve the socioeconomic fabric of the region. The development of green

industries could promote a more sustainable and resilient economy. The substantial econo-

mic prospects highlight the opportunity for collaborative governance at local, provincial,

and national levels. Such collaboration can pool resources and integrate diverse exper-

tise to maximize the efficacy and reach of these initiatives. Moreover, their successful

implementation could serve as a model for other regions or countries facing similar en-

vironmental challenges, potentially leading to international alliances or partnerships that

extend the reach and impact of these actions.

Concerning methodological insights, this study rejects the hypothesis that the ra-

tios of common Revealed Preferences and Stated Preferences parameters equal one at a

99% confidence level, suggesting that the process by which experienced fishers choose fi-

shing sites in hypothetical situations differs from how they have chosen sites during their

recent visits. This outcome aligns with the findings of Von Haefen and Phaneuf (2008).

However, it contradicts other studies (Taylor et al., 2010). Von Haefen and Phaneuf (2008)

use the ratio of travel costs in RP and SP data to estimate the scale parameter ratio. In this
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study, I apply a scale ratio for each attribute, using the average levels across the characte-

ristics of the fishing sites. Based on the RP/SP scale ratios, I adjust the SP parameters in

the combined RP/SP model. Von Haefen and Phaneuf (2008) highlight that estimations

made with variable ratios improve model fits. A key takeaway from both the findings of

Von Haefen and Phaneuf (2008) and my own research is that, when both stated preference

(SP) and revealed preference (RP) data are available, researchers should ensure that the

common variables in Revealed and Stated Preferences originate from the same process.

Statistical tests can then be used to assess the equality between the shared parameters of

Revealed and Stated Preferences.

7 CONCLUSION

This study utilizes survey data from 212 open-water fishermen to conduct a com-

prehensive cost-benefit analysis of implementing seven climate change adaptation mea-

sures at Lake Saint-Pierre in Quebec. The research methodology integrates both Revealed

Preference and Stated Preference approaches to accurately estimate the marginal willin-

gness to pay (MWTP) for enhancements in various attributes of fishing sites. The results

of the study reveal specific MWTP values for different attributes : accessibility is valued

at $227.40, the catch rate (number of fish caught per hour) at $45.20, traffic at the site at

$39.00, the quality of fish habitats at $4.80, and the average length of fish caught within

an hour at $7.80. The aggregate MWTP across these attributes amounts to approximately

$324.20, translating into an estimated annual benefit of around $9.62 million for open-

water fishing activities.

When these findings are combined with those from the research conducted by He

et al. (2016), the annual economic benefits derived from implementing the seven adapta-

tion measures at Lake Saint-Pierre are estimated to range between $1,236.62 million and

$3,280.62 million. This leads to a net benefit ranging from $888.62 million to $2,270.62

million. Such figures underscore that the economic advantages of the proposed adaptation

measures significantly exceed their associated costs.

Furthermore, this study uncovers a significant difference in the decision-making

patterns of experienced fishermen. It appears that the way fishermen select fishing sites

in hypothetical scenarios does not always align with their choices in actual, recent fishing

trips. This discrepancy suggests that the data derived from Revealed Preference (RP) and
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Stated Preference (SP) methodologies originate from distinct decision-making processes.

This finding highlights the complexity and multifaceted nature of fishermen’s site selec-

tion behavior.
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CONCLUSION

Cette thèse a étudié l’impact de l’adoption de mesures d’adaptation aux change-

ments climatiques sur l’agriculture en Afrique subsaharienne. Pour ce faire, j’ai intégré

des variables climatiques supplémentaires, au-delà de la température et des précipitations,

et j’ai corrigé l’endogénéité de la variable d’adaptation. Les données utilisées proviennent

de quatre pays d’Afrique subsaharienne. Les résultats montrent que l’accès au crédit et

aux sources d’information sont des déterminants importants de la décision d’adaptation

aux changements climatiques.

Le premier article a démontré que la mise en œuvre de stratégies d’adaptation

entraîne une augmentation statistiquement significative des rendements agricoles d’en-

viron 281 kg par hectare, soit une hausse de 23,3% du rendement annuel par hectare.

De plus, selon que les mesures d’adaptation soient adoptées séparément ou combinées,

elles génèrent des rendements de magnitudes différentes. Le deuxième article révèle

que l’adoption de stratégies d’adaptation aux changements climatiques est associée à

une baisse significative de l’exposition des agriculteurs aux risques environnementaux.

Toutefois, cette réduction est hétérogène selon les pays, due à des inégalités dans l’accès

au crédit et aux sources d’information.

Le dernier article associe les méthodes de préférences révélées (coûts de transport)

et de préférences déclarées (choix multi-attributs) pour estimer les bénéfices annuels liés

à l’adoption de sept mesures d’adaptation au Lac Saint-Pierre, au Québec. Les résultats

suggèrent que ces bénéfices pourraient atteindre 9,62 millions de dollars. Ils montrent

aussi une divergence dans les données produites par ces deux méthodes, indiquant que

la façon dont les pêcheurs ont choisi les sites de pêche lors de leurs dernières visites

diffère de celle adoptée lors des scénarios hypothétiques qui leur ont été présentés. Ces

deux méthodes ne génèrent pas les mêmes types de données, rendant leur combinaison

complexe.
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ANNEXE A

ANNEXE ARTICLE 1 et 2

Table A.1 –
A. Variable definitions

Variable name Definition
adaptation dummy=1 if the farmer adapted to climate change, 0 otherwise
yield quantity produced per hectare (kg)
yield skewness third central moment of the distribution of yields
yield variance second (variance) of the distribution of yields
yield kurtosis fourth central moment of the distribution of yields
temperature average temperatures (°C)
rainfall average rainfall (mm)
solar average solar radiation (kJ m−2 day−1)
evaporation average evaporation (kPa)
wind average wind speed s(m s−1)
altitude altitude coordinates
atitude latitude coordinates
irrigation dummy=1 if crops are rainfed/water irrigated, 0 otherwise
machinery dummy=1 if machinery is used, 0 otherwise
labor labor use per hectare (adult days)
inorganic fertilizer inorganic fertilizer used per hectare (kg)
organic fertilizer organic fertilize used per hectare (kg)
pesticide powder pesticide powder used per hectare (kg)
pesticide liquid pesticide liquid used per hectare (kg)
seed Seed used per hectare (kg)
literacy dummy=1 if the household head is literate, 0 otherwise
male dummy=1 if the household head is male, 0 otherwise
age age of the household head
household-size household size
relatives number of relatives in the district
access credit dummy=1 if the farmer accesses to credit, 0 otherwise
offfarm job dummy=1 if the farmer has an non-farm job, 0 otherwise
computer dummy=1 if the farmer has at least a computer, 0 otherwise
drought experience dummy=1 if the farmer experimented drought, 0 otherwise
flood experience dummy=1 if the farmer experimented a flood, 0 otherwise
pests experience dummy=1 if the farmer experimented pests, 0 otherwise
severe experience dummy=1 if the farmer experimented severe winds, 0 otherwise
hail experience dummy=1 if the farmer experimented hail storms, 0 otherwise
riverine experience dummy=1 if the farmer experimented riverine flooding, 0 otherwise
landslides experience dummy=1 if the farmer experimented landslides, 0 otherwise
access extension dummy=1 if the farmer accessed to extension services, 0 otherwise
farmer organization dummy=1 if the farmer belongs to a farmer’s organization, 0 otherwise
government info dummy=1 if the farmer has access to government info, 0 otherwise
newspaper info dummy=1 if the farmer has access to newspaper info, 0 otherwise
radio info dummy=1 if the farmer has access to radio info, 0 otherwise
tv info dummy=1 if the farmer has access to tv info, 0 otherwise
community info dummy=1 if the farmer has access to community info, 0 otherwise
ngo info dummy=1 if the farmer has access to NGO info, 0 otherwise
temple info dummy=1 if the farmer has access to temple info, 0 otherwise
social media info dummy=1 if the farmer has access to social media info, 0 otherwise
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Table A.2 –
A. Adaptation decisions and agricultural yields (continued)

FIML OLS FIML
Adaptation Yields

Adapted Nonadapted
(1) (2) (3) (4)

fall temp −.25∗∗∗ (.07) 597.4∗∗ (270.8) 1329.6∗∗ (473.4) 84.0 (531.6)
fall temp sqr .01∗∗∗ (.00) −10.7∗∗ ( 5.1) −21.5∗∗ (9.2) -.6 (9.5)
winter temp .41∗∗∗ (.03) −417.3∗∗ (160.2) -319.2 (229.8) 1005.8∗∗ (435.1)
winter temp sqr −.01∗∗∗ (.00) 10.5∗∗∗ (3.5) 8.7∗ (4.9) −18.0∗∗ (8.1)
spring temp −.59∗∗∗ (.06) 525.7∗ (316.7) 139.3 (385.1) −1395.8∗∗ (443.4)
spring temp sqr .01∗∗∗ (.00) -10.9 (6.7) -1.9 (8.6) 29.7∗∗∗ (8.7)
summer temp .70∗∗∗ (.08) −621.5∗ (354.1) −974.8∗∗ (483.4) -28.4 (546.1)
summer temp sqr −.01∗∗∗ (.00) 10.9 (7.1) 17.6∗ (9.7) -1.3 (10.7)
fall rainfall .00 (.00) 4.3∗∗ (2.2) 5.3∗∗ (2.3) 7.9 (5.1)
fall rainfall sqr .01∗∗∗ (.00) -.1 (.1) -.1 (.1) -.1 (.1)
winter rainfall −.00∗∗∗ (.00) .4 (1.1) .3 (1.1) −9.1∗∗∗ (3.4)
winter rainfall sqr .00∗∗∗ (.00) −.1∗∗ (.00) −.1∗ (.00) .1 (.1)
spring rainfall −.00∗∗∗ (.00) -.1 (1.8) -1.6 (2.5) 2.8 (3.2)
spring rainfall sqr .00 (.00) .1∗ (.0) .1 (.1) .1 (.1)
summer rainfall −.00∗∗∗ (.00) -.7 (2.5) -1.5 (2.8) -3.0 (5.6)
summer rainfall sqr .00∗∗∗ (.00) -.1 (.1) .1 (.1) .1 (.1)
fall solar .01∗∗∗ (.00) -64018.3 (96735.1) .6 (.6) −1.6∗∗ (.7)
fall solar sqr .00∗∗∗ (.00) 3311.5 (4980.3) -.0 (.1) .1∗∗∗ (.0)
winter solar .00∗∗∗ (.00) 50617.1 (41084.9) .2 (.4) .3 (.2)
winter solar sqr −.00∗∗∗(.00) -2571.4 (2127.9) -0.0 (.0) −.1∗ (.0)
spring solar −.00∗∗∗ (.00) 77593.9 (53055.7) -.1 (.2) .3 (.3)
spring solar sqr .00∗∗∗ (.00) -4089.6 (2716.8) -.0 (.0) -.0 (.0)
summer solar −.01∗∗∗ (.00) 102632.8 (75260.8) -.4 (.6) 1.0 (1.2)
summer solar sqr .00∗∗∗ (.00) -5260.3 (3888.5) .0 (.0) -.0 (.0)
fall evaporation −1.93∗∗∗ (.31) 5263.2∗∗∗ (1542.5) 4400.1∗∗ (2005.4) 6747.3∗∗∗ (2560.6)
fall evaporation sqr .30∗∗∗ (.08) −1437.2∗∗∗ (391.4) −1175.1∗∗∗ ( 490.0) −1469.9∗∗ (701.7)
winter evaporation .61 (.48) 1673.1 (2191.8) 1975.8 (4065.8) 2268.8 (5358.2)
winter evaporation sqr -.17 (.12) -257.8 (565.2) -313.4 (1075.3) -741.8 (1206.6)
spring evaporation −2.49∗∗∗ (.42) 269.4 (1809.7) -632.8 (3455.8) -620.3 (4981.7)
spring evaporation sqr .97∗∗∗ (.11) -358.3 (521.9) 86.5 (965.2) 188.5 (1154.6)
summer evaporation 1.93∗∗∗ (.31) −5900.4∗∗∗ (1342.1) -3982.6 (2493.8) −7195.4∗∗ (1905.0)
summer evaporation sqr −.45∗∗∗ (.08) 1616.7∗∗∗ (378.0) 1232.6∗ (592.4) 1592.5∗∗∗ (599.6)
fall wind −.55∗∗∗ (.09) 82.4 (379.0) 492.4 (440.5) -722.4 (635.8)
fall wind sqr .13∗∗∗ (.02) -53.8 (80.8) -139.4 (109.0) 113.1 (129.1)
winter wind .87∗∗∗ (.10) −1171.8∗∗∗ (379.5) -405.8 (434.9) -827.0 (702.6)
winter wind sqr −.14∗∗∗ (.02) 202.6∗∗∗ (75.8) 79.4 (90.7) 178.0 (126.6)
spring wind .17∗∗ (.07) 857.5∗∗ (401.3) -41.3 (319.1) 907.2∗ (528.1)
spring wind sqr −.07∗∗∗ (.01) -96.9 (55.3) 30.4 (47.9) −172.9∗ (101.8)
summer wind −.37∗∗∗ (.08) 277.6 (374.9) 455.8 (444.8) 60.7 (401.4)
summer wind sqr .08∗∗∗ (.01) -59.5 (84.3) -95.8 (103.6) -13.8 (79.9)
Number obs. 5,091 3,280 1,811
Notes : Awé, 2024. Robust standard errors are clustered at the district level and are shown in parentheses. The first
column present the OLS estimates from equation (1.3), with errors clustered at the district level. In column (1), the
quantity produced per hectare (yield) is regressed on the adaptation dummy variable and control variables have been
included. The estimates for the endogenous switching regression, derived from equations (1.2), (1.4), and (1.5), with
errors clustered at the district level, are also reported. The term σj represents the square root of the variance of the error
terms µtj in the outcome equations (1.4) and (1.5). Meanwhile, ρj indicates the correlation coefficient between the error
term µ from the selection equation (1.4) and the error term υtj from the respective outcome equations. Symbols ∗ ∗ ∗,
∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.3 –
A. Adaptation decisions and farmer’s exposure to climate risks (continued)

FIML Dependent Variables : Variance, Skewness, and Kurtosis of Yield Distribution
Skewness (M3) Variance (M2) Kurtosis (M4)

Adapted Nonadapted Adapted Nonadapted
(1) (2) (3) (4) (5) (6)

fall temp 9.91∗∗∗ 1.15 .13 −2.91∗∗ .98 3.99
( 3.55) (4.63) (1.79) (1.34) (11.96) (5.96)

fall temp sqr −.20∗∗∗ -.01 .001 .05∗∗ -.006 -.09
(.07) (.07) (.03) (.02) (.21) (.11)

winter temp -1.66 3.96 3.33∗∗∗ .96∗∗ 18.55∗∗ -.17
(1.12) (3.57) (1.20) (.37) ( 9.32) ( 1.61)

winter temp sqr .02 -.06 −.05∗∗ −.02∗∗∗ −.32∗ -.009
(.02) (.06) (.02) (.01) (.18) (.036)

spring temp 5.48∗∗∗ −11.02∗∗∗ −4.59∗∗∗ −2.68∗∗∗ −37.98∗∗∗ -1.31
(2.03) (3.97) (1.52) (.84) (11.62) (3.23)

spring temp sqr −.10∗∗ .22∗∗∗ .09∗∗∗ .05∗∗∗ .760∗∗∗ .02
(.04) (.08) (.03) (.01) (.24) (.069)

summer temp −10.39∗∗∗ 4.97 1.12 4.59∗∗∗ 15.75 .79
(3.23) (4.39) (1.43) (1.27) (11.79) (5.14)

summer temp sqr .20∗∗∗ -.08 -.02 −.08∗∗∗ -.29 .003
(.06) (.08) (.02) (.02) (.22) (.102)

fall rainfall -.007 .03 .03∗∗ -.01 .14∗ -.011
(.01) (.04) (.01) (.01) (.07) (.023)

fall rainfall sqr .00 -.00 -.00 .00 -.00 -.00
( .00) (.00) (.00) (.00) (.00) (.00)

winter rainfall .01 -.06 −.03∗∗ -.00 −.14∗∗∗ .00
(.02) (.05) (.01) (.01) (.05) (.015)

winter rainfall sqr -.00 .00 .00 .01∗∗∗ .00 .00
(.00) (.00) (.00) (.00) (.00) (.00)

spring rainfall .01 .05 .00 -.01 -.02 .00
(.01) (.04) (.01) (.01) (.06) (.01)

spring rainfall sqr -.00 -.00 .00∗ −.00∗∗ .00∗∗ −.00∗∗

(.00) (.00) (.00) (.00) (.00) (.00)
summer rainfall -.01 -.08 .01 .01 .03 .01

(.01) (.06) (.01) (.01) (.07) (.02)
summer rainfall sqr .00 .00 -.00 .00 -.00 .00

(.00) (.00) (.00) (.00) (.00) (.00)
fall solar .01∗∗∗ .00 -.001 −.01∗∗∗ .01 −.017∗∗

(.00) (.01) (.00) (.00) (.02) (.01)
fall solar sqr −.04∗∗ -.01 .00 .00∗∗∗ -.00 .00∗∗

(.01) (.10) (.00) (.00) (.00) (.00)
winter solar −.01∗∗∗ .00 -.00 .002∗∗∗ .01∗∗ .00

(.00) (.00) (.00) (.00) (.00) (.00)
winter solar sqr .02∗∗∗ -.00 -.00 −.01∗∗∗ −.00∗ -.00

(.00) (.01) (.00) (.00) (.00) (.00)
spring solar .01∗ .00 .00∗∗∗ −.01∗∗∗ -.00 -.00

(.00) (.00) (.001) (.00) (.00) (.00)
spring solar sqr −.01∗∗ -.00 −.01∗∗∗ .01∗∗∗ .00 .00

(.00) (.00) (.00) (.00) (.00) (.00)
Notes : Awé, 2024. presents the Full Information Maximum Likelihood (FIML) estimates for the variance, skewness,
and kurtosis of yield distribution among farmers, categorized into ’Adapted’ and ’Nonadapted’ groups based on their
responses to climate risks. The robust standard errors, presented in parentheses, are clustered at the district level to
account for potential intragroup correlations. The estimates are derived from an endogenous switching regression
model, as detailed in equations (2.4), (2.5), and (2.6). In these models, σj represents the square root of the variance
of the error terms (µjj) in the outcome equations ((2.5) and (2.6)), providing insights into the variability of the yield
distribution. The correlation coefficient ρj , calculated between the error term ηi in the selection equation ((2.4)) and
the error term εji in the outcome equations, indicates the degree of association between the selection process and the
yield outcomes. Statistical significance levels are indicated by asterisks : ∗ ∗ ∗ (1%), ∗∗ (5%), and ∗ (10%).
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ANNEXE B

ANNEXE ARTICLE 3

Table B.1 –
A. Repartition of RP attributes per fishing sectors

Sectors
Attributes Sector 1 Sector 2 Sector 3 Chenal 1 Chenal 2 Chenal 3
Number of fish caught 2.56 2.94 2.69 2.62 2.09 1.44

(1.90) (2.59) (1.85) (2.84) (1.60) (1.58)
Length of fish caught (mm) 467.86 407.5 440 429.21 405.08 401.67

(157.35) (78.29) (92.27) (71.36) (68.14) (88.37)
Quality of fish habitat 294 458 66 289 278 91
Accessibility to fishing sites (hour) 1.58 1.22 1.44 1.52 1.14 1.55

(1.73) (0.69) (0.51) (1.75) (0.53) (0.52)
Fishers number 2.28 2.17 2.21 2.33 2.15 2.31

(0.86) (0.85) (0.79) (0.88) (0.91) (0.75)
Notes : Awé, 2024.The table presents average values for various attributes across different fishing sectors
and channels, with standard errors shown in parentheses. "Number of fish caught" indicates the average
catch per hour per fisher ; "Length of fish caught" is the average size of the catch in millimeters ; "Quality of
fish habitat" reflects the total catch in 2015, serving as an indirect measure of habitat quality ; "Accessibility
to fishing sites" measures the average travel time in hours from home to the fishing location ; "Fishers num-
ber" denotes the average number of adult fishermen present during a trip. The absence of standard errors for
"Quality of fish habitat" is due to its aggregate nature, representing total catch rather than individual varia-
bility. This comprehensive data provides insights into the fishing dynamics and environmental conditions
of each sector.


	SOMMAIRE
	RÉSUMÉ
	ABSTRACT
	LISTE DES ABRÉVIATIONS, DES SIGLES ET DES ACRONYMES
	DÉDICACE
	REMERCIEMENTS
	INTRODUCTION
	AVANT-PROPOS (ARTICLE 1) : THE ROLE OF ADAPTATION TO CLIMATE CHANGE IN ENHANCING AGRICULTURAL YIELDS: EVIDENCE FROM AFRICA
	THE ROLE OF ADAPTATION TO CLIMATE CHANGE IN ENHANCING AGRICULTURAL YIELDS: EVIDENCE FROM AFRICA
	INTRODUCTION
	BACKGROUND AND CONTEXT
	Burkina Faso
	Sao Tomé and Principe
	Sierra Leone
	Uganda

	METHODOLOGICAL APPROACHES AND ECONOMETRIC MODELS
	The bivariate adaptation decision and agricultural production
	Bivariate process of making adaptation decision
	Reduced-form of the adaptation decision-making process
	Reduced-form of the production function
	Endogenous switching regression models

	Instruments
	Comments on the selectivity bias correcting methods
	Theoretical arguments for the exclusion restriction
	Falsification testing for the exclusion restriction
	Analysis of an additional endogeneity issue

	The multivariate adaptation decision and agricultural production
	Multivariate process of making adaptation decision
	Reduced-Form of the production function
	Endogenous switching regression models


	SURVEY DESIGN AND DATA DESCRIPTION
	Survey data
	Climate data

	RESULTS
	Basic correlation: OLS estimates
	Assessing instrument validity: The use of falsification test
	Drivers of adaptation decision
	Determinants of yields for adapters and non-adapters
	Impact on agricultural yields: An analysis of ATT estimates
	Impact of climate change adaptation on principal crop yields: a country-specific analysis
	Analysis of individual adaptation measures on crop yields: a crop-specific breakdown

	CONCLUSION

	AVANT-PROPOS (ARTICLE 2) : ADAPTATION TO CLIMATE CHANGE AND FARMERS' EXPOSURE TO ENVIRONMENTAL RISKS: A STUDY IN FOUR AFRICAN COUNTRIES
	ADAPTATION TO CLIMATE CHANGE AND FARMERS' EXPOSURE TO ENVIRONMENTAL RISKS: A STUDY IN FOUR AFRICAN COUNTRIES
	INTRODUCTION
	BACKGROUND AND CONTEXT
	ANALYSIS FRAMEWORK AND ECONOMETRIC MODEL
	Metrics for assessing production uncertainty
	Econometric models

	DATA
	FINDINGS
	Determinants of production uncertainty for adapters and non-adapters
	Effects of adaptation on production uncertainty: ATT estimates

	CONCLUSION

	AVANT-PROPOS (ARTICLE 3) : ENVIRONMENTAL BENEFITS OF ADAPTATION TO CLIMATE CHANGE: COMBINING REVEALED AND STATED PREFERENCE APPROACHES
	ENVIRONMENTAL BENEFITS OF ADAPTATION TO CLIMATE CHANGE: COMBINING REVEALED AND STATED PREFERENCE APPROACHES
	INTRODUCTION
	BACKGROUND
	RP approach
	Advantages
	Limitations

	SP approach
	Advantages
	Limitations

	Combining RP and SP approaches
	Advantages
	Challenges


	DATA
	Survey data
	Monitoring data from fishing patrols
	Descriptive statistics of the factors influencing fishing site choices
	Recent visit data (RP data)
	Hypothetical data (SP data)
	Demographic Information


	IDENTIFICATION AND ECONOMETRIC SPECIFICATION WITH RP AND SP DATA
	Identification and econometric specification with RP data only
	Identifying and specifying econometric models with SP data only 
	Assessing the parameters of common variables in RP and SP data
	Synthesis model: Combining RP and SP data
	Estimating the marginal willingness to pay for attribute improvements

	RESULTS
	Discussion of the main results from the RP estimation only
	Analysis of key outcomes from the SP estimation only
	Testing of parameters of common variables in RP and SP data
	Analysis of principal findings from the combined RP/SP estimation
	Marginal willingness to pay for attribute improvement

	EVALUATION OF THE COMBINED RP/SP METHOD AND POLITICAL IMPLICATIONS
	CONCLUSION

	CONCLUSION
	ANNEXE ARTICLE 1 et 2
	ANNEXE ARTICLE 3

